DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH

Contact Information
Department of Statistics and Operations Research
Visit Program Website (http://www.stat-or.unc.edu)
318 Hanes Hall, CB# 3260
(919) 843-6024

Vladas Pipiras, Chair
Serhan Ziya, Director of Undergraduate Studies
ziya@email.unc.edu
Alison Kieber, Administrative Support Associate
kieber@email.unc.edu

Introduction
The major in statistics and analytics (STAN) is an excellent program for students interested in statistical data science, operations research, and actuarial science, as well as in fields such as business, economics, public policy and health, psychology, and biomedicine where the decision and statistical sciences play an increasingly important role.

Particular areas in which graduates can obtain employment or continue with graduate study include

Statistics
Probability and statistics are two of the most frequently applied areas in the mathematical decision sciences. Students in this area study the mathematical theories of probability and statistics and their application to mathematical models that contain an element of uncertainty or randomness. Opportunities for employment are manifold in businesses and government agencies dealing with many branches of the natural and social sciences, including pharmacology, environmental sciences, and many others.

Operations Research
In this area, students study mathematical, statistical, and computational techniques related to decision making. Operations research is crucial in business, government, and other management areas where decisions are made by solving large, complex problems (for example, crew scheduling for airlines). In addition to their major courses, students interested in this field are encouraged to take courses in business and economics.

Actuarial Science
Actuaries are mathematicians who work primarily in businesses that involve financial risk, including the insurance industry. Students interested in this field take advanced courses in statistics, stochastic processes, and the mathematical theory of risk.

Advising
All majors and minors have a primary academic advisor in Steele Building. Students are strongly encouraged to meet regularly with their advisor and review their Tar Heel Tracker each semester. STAN majors and minors are also encouraged to meet with departmental advisors to discuss course planning before registration each semester. The director of undergraduate studies works with prospective majors and minors by appointment. Additional information on courses, undergraduate research opportunities, the honors program, careers, and graduate schools may be obtained from the department’s website (http://www.stat-or.unc.edu/) or by contacting the director of undergraduate studies.

Courses for Students from Other Departments
The Department of Statistics and Operations Research offers a variety of courses of potential value to students majoring in other disciplines. Introductory courses include STOR 113 and STOR 215, which are foundation courses in decision models, and the basic statistical courses, STOR 120, STOR 151 and STOR 155. At the intermediate level, STOR 305 provides an introduction to business decision models, while STOR 471 is an introductory course in actuarial science. Substantial coverage of applied statistical methods is provided in STOR 455 and STOR 556. At more advanced mathematical levels, an introduction to probability theory is provided by STOR 435, and the basic theory of statistical inference is given by STOR 555. More advanced deterministic and stochastic models of operations research are provided in STOR 415 and STOR 445.

Graduate School and Career Opportunities
Regardless of the electives chosen, the statistics and analytics degree program provides excellent preparation for graduate study. Graduates with concentrations in operations research or statistics often continue work at the graduate level in those fields or related areas such as industrial engineering, biostatistics, and environmental science, or enter business school to pursue the master's in business administration (M.B.A.) degree.

A five-year B.S.–M.S. degree program in operations research is also an option. Interested students should consult the director of graduate studies for the operations research program.

Graduates of the statistics and analytics program will find numerous opportunities for well-paid, challenging jobs.

Major

• Statistics and Analytics Major, B.S. (http://catalog.unc.edu/undergraduate/programs-study/statistics-analytics-majors-bs/)

Minor

• Data Science Minor (http://catalog.unc.edu/undergraduate/programs-study/data-science-minor/)
• Statistics and Analytics Minor (http://catalog.unc.edu/undergraduate/programs-study/statistics-and-analytics-minor/)

Graduate Programs

• M.S. in Statistics and Operations Research (http://catalog.unc.edu/graduate/schools-departments/statistics-operations-research/)
• Ph.D. in Statistics and Operations Research (http://catalog.unc.edu/graduate/schools-departments/statistics-operations-research/)

Professors
Associate Professors
Chuanshu Ji, Mariana Olvera-Cravioto, Gabor Pataki, Kai Zhang.

Assistant Professors
Sayan Banerjee, Nicolas Fraiman, Yao Li, Quoc Tran-Dinh, Zhengwu Zhang.

Teaching Associate Professor
Robin Cunningham.

Teaching Assistant Professors
Charles Dunn, Mario Giacomazzo, William Lassiter, Jeffrey McLean.

Joint Professors
Joseph Ibrahim, Michael Kosorok, Jayashankar Swaminathan.

Professors Emeriti

STOR—Statistics and Operations Research
Undergraduate-level Courses

STOR 52. First-Year Seminar: Decisions, Decisions, Decisions. 3 Credits.
In this course, we will investigate the structure of these decision problems, show how they can be solved (at least in principle), and solve some simple problems.
Gen Ed: QI.
Grading status: Letter grade.

STOR 53. FYS: Networks: Degrees of Separation and Other Phenomena Relating to Connected Systems. 3 Credits.
Networks, mathematical structures that are composed of nodes and a set of lines joining the nodes, are used to model a wide variety of familiar systems.
Gen Ed: QI.
Grading status: Letter grade.

STOR 54. First-Year Seminar: Adventures in Statistics. 3 Credits.
This seminar aims to show that contrary to common belief, statistics can be exciting and fun. The seminar will consist of three modules: statistics in our lives, randomness, and principles of statistical reasoning.
Gen Ed: QI.
Grading status: Letter grade.

STOR 55. First-Year Seminar: Risk and Uncertainty in the Real World. 3 Credits.
The aim of this class is to study the role of uncertainty in our daily lives, to explore the cognitive biases that impair us, and to understand how one uses quantitative models to make decisions under uncertainty in a wide array of fields including medicine, law, finance, and the sciences.
Gen Ed: QI.
Grading status: Letter grade.

STOR 56. First-Year Seminar: The Art and Science of Decision Making in War and Peace. 3 Credits.
This seminar will use recently assembled historical material to tell the exciting story of the origins and development of operations research during and after World War II.
Gen Ed: QI.
Grading status: Letter grade.

STOR 60. First-Year Seminar: Statistical Decision-Making Concepts. 3 Credits.
We will study some basic statistical decision-making procedures and the errors and losses they lead to. We will analyze the effects of randomness on decision making using computer experimentation and physical experiments with real random mechanisms like dice, cards, and so on.
Gen Ed: QI.
Grading status: Letter grade.

STOR 61. First-Year Seminar: Statistics for Environmental Change. 3 Credits.
Studies the Environmental Protection Agency's Criteria Document, mandated by the Clean Air Act; this document reviews current scientific evidence concerning airborne particulate matter. Students learn some of the statistical methods used to assess the connections between air pollution and mortality, and prepare reports on studies covered in the Criteria Document.
Gen Ed: QI.
Grading status: Letter grade.

STOR 62. First-Year Seminar: Probability and Paradoxes. 3 Credits.
The theory of probability, which can be used to model the uncertainty and chance that exist in the real world, often leads to surprising conclusions and seeming paradoxes. We survey and study these, along with other paradoxes and puzzling situations arising in logic, mathematics, and human behavior.
Gen Ed: QI.
Grading status: Letter grade.

STOR 63. FYS: Statistics, Biostatistics, and Bioinformatics: An Introduction to the Ongoing Evolution. 3 Credits.
This course is designed to emphasize the motivation, philosophy, and cultivation of statistical reasoning in the interdisciplinary areas of statistical science and bioinformatics.
Gen Ed: QI.
Grading status: Letter grade.

STOR 64. First-Year Seminar: A Random Walk down Wall Street. 3 Credits.
Introduces basic concepts in finance and economics, useful tools for collecting and summarizing financial data, and simple probability models for quantification of market uncertainty.
Gen Ed: QI.
Grading status: Letter grade.

STOR 66. First-Year Seminar: Visualizing Data. 3 Credits.
This seminar looks at a variety of ways in which modern computational tools allow easy and informative viewing of data. Students will also study the kinds of choices that have to be made in data presentation and viewing.
Gen Ed: QI.
Grading status: Letter grade.
STOR 72. First-Year Seminar: Unlocking the Genetic Code. 3 Credits.
Introduces students to the world of genetics and DNA and to the use of computers to organize and understand the complex systems associated with the structure and dynamics of DNA and heredity.
Gen Ed: QI.
Grading status: Letter grade.

STOR 89. First-Year Seminar: Special Topics. 3 Credits.
Special Topics Course. Contents will vary each semester.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 6 total credits. 2 total completions.
Grading status: Letter grade.

STOR 112. Decision Models for Business. 3 Credits.
An introduction to the basic quantitative models of business with linear and nonlinear functions of single and multiple variables. Linear and nonlinear optimization models and decision models under uncertainty will be covered.
Requisites: Prerequisite, MATH 110.
Gen Ed: QR.
Grading status: Letter grade.

STOR 113. Decision Models for Business and Economics. 3 Credits.
An introduction to multivariable quantitative models in economics. Mathematical techniques for formulating and solving optimization and equilibrium problems will be developed, including elementary models under uncertainty.
Requisites: Prerequisite, MATH 110.
Gen Ed: QR.
Grading status: Letter grade.

STOR 115. Reasoning with Data: Navigating a Quantitative World. 3 Credits.
Students will use mathematical and statistical methods to address societal problems, make personal decisions, and reason critically about the world. Authentic contexts may include voting, health and risk, digital humanities, finance, and human behavior. This course does not count as credit towards the psychology or neuroscience majors.
Gen Ed: QR.
Grading status: Letter grade
Same as: MATH 115, BIOL 115, PSYC 115.

STOR 120. Foundations of Statistics and Data Science. 4 Credits.
The course teaches critical concepts and skills in computer programming and statistical inference, in conjunction with hands-on analysis of real-world datasets, including economic data, document collections, geographical data, and social networks. It delves into social issues surrounding data analysis such as privacy and design.
Gen Ed: QR.
Grading status: Letter grade.

STOR 151. Introduction to Data Analysis. 3 Credits.
Elementary introduction to statistical reasoning, including sampling, elementary probability, statistical inference, and data analysis. STOR 151 may not be taken for credit by students who have credit for ECON 400 or PSYC 210.
Requisites: Prerequisite, MATH 110.
Gen Ed: QR.
Grading status: Letter grade.

STOR 155. Introduction to Data Models and Inference. 3 Credits.
Data analysis; correlation and regression; sampling and experimental design; basic probability (random variables, expected values, normal and binomial distributions); hypothesis testing and confidence intervals for means, proportions, and regression parameters; use of spreadsheet software.
Requisites: Prerequisite, MATH 110.
Gen Ed: QI.
Grading status: Letter grade.

STOR 190. Special Topics. 3 Credits.
Examines selected topics from statistics and operations research. Course description is available from the department office.
Repeat rules: May be repeated for credit. 12 total credits. 4 total completions.
Grading status: Letter grade.

STOR 215. Foundations of Decision Sciences. 3 Credits.
Introduction to basic concepts and techniques of discrete mathematics with applications to business and social and physical sciences. Topics include logic, sets, functions, combinatorics, discrete probability, graphs, and networks.
Requisites: Prerequisite, MATH 110.
Gen Ed: QR.
Grading status: Letter grade.

STOR 290. Special Topics. 3 Credits.
Examines selected topics from statistics and operations research. Course description is available from the department office.
Repeat rules: May be repeated for credit. 12 total credits. 4 total completions.
Grading status: Letter grade.

STOR 305. Introduction to Decision Analytics. 3 Credits.
The use of mathematics to describe and analyze large-scale decision problems. Situations involving the allocation of resources, making decisions in a competitive environment, and dealing with uncertainty are modeled and solved using suitable software packages.
Requisites: Prerequisite, STOR 120, 155, or MATH 152.
Gen Ed: QI.
Grading status: Letter grade.

STOR 320. Introduction to Data Science. 4 Credits.
Development of basic skill set for data analysis from obtaining data to data carpentry, exploration, modeling, and communication. Topics covered include regression, clustering, classification, algorithmic thinking, and non-standard data objects (networks and text data). Students may not receive credit for both STOR 320 and STOR 520.
Requisites: Prerequisite, STOR 120 or 155.
Gen Ed: QI.
Grading status: Letter grade.

STOR 358. Sample Survey Methodology. 4 Credits.
Fundamental principles and methods of sampling populations, with emphasis on simple, random, stratified, and cluster sampling. Sample weights, nonsampling error, and analysis of data from complex designs are covered. Practical experience through participation in the design, execution, and analysis of a sampling project.
Requisites: Prerequisite, BIOS 650; permission of the instructor for students lacking the prerequisite.
Gen Ed: EE Field Work.
Grading status: Letter grade
Same as: BIOS 664.
STOR 390. Special Topics in Statistics and Operations Research. 3 Credits.
Examines selected topics from statistics and operations research. Course description is available from the department office.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.

Advanced Undergraduate and Graduate-level Courses

STOR 415. Introduction to Optimization. 3 Credits.
Linear, integer, nonlinear, and dynamic programming, classical optimization problems, network theory.
Requisites: Prerequisite, MATH 547.
Grading status: Letter grade.

STOR 435. Introduction to Probability. 3 Credits.
Introduction to mathematical theory of probability covering random variables; moments; binomial, Poisson, normal and related distributions; generating functions; sums and sequences of random variables; and statistical applications. Students may not receive credit for both STOR 435 and STOR 535.
Requisites: Prerequisite, MATH 233.
Gen Ed: QI.
Grading status: Letter grade
Same as: MATH 535.

STOR 445. Stochastic Modeling. 3 Credits.
Introduction to Markov chains, Poisson process, continuous-time Markov chains, renewal theory. Applications to queueing systems, inventory, and reliability, with emphasis on systems modeling, design, and control.
Requisites: Prerequisite, BIOS 660, STOR 435 or 535.
Grading status: Letter grade.

STOR 455. Methods of Data Analysis. 3 Credits.
Review of basic inference; two-sample comparisons; correlation; introduction to matrices; simple and multiple regression (including significance tests, diagnostics, variable selection); analysis of variance; use of statistical software.
Requisites: Prerequisite, STOR 120, or 155.
Grading status: Letter grade.

STOR 471. Long-Term Actuarial Models. 3 Credits.
Probability models for long-term insurance and pension systems that involve future contingent payments and failure-time random variables. Introduction to survival distributions and measures of interest and annuities-certain.
Requisites: Prerequisite, STOR 435, or 535.
Gen Ed: QI.
Grading status: Letter grade.

STOR 472. Short Term Actuarial Models. 3 Credits.
Short term probability models for potential losses and their applications to both traditional insurance systems and conventional business decisions. Introduction to stochastic process models of solvency requirements.
Requisites: Prerequisite, STOR 435, or 535.
Grading status: Letter grade.

STOR 475. Healthcare Risk Analytics. 3 Credits.
This course will introduce students to the healthcare industry and provide hands-on experience with key actuarial and analytical concepts that apply across the actuarial field. Using real world situations, the course will focus on how mathematics and the principles of risk management are used to help insurance companies and employers make better decisions regarding employee benefit insurance products and programs.
Requisites: Prerequisite, STOR 435, or 535.
Grading status: Letter grade.

STOR 490. Special Topics. 3 Credits.
Examines selected topics from statistics and operations research. Course description is available from the department office.
Repeat rules: May be repeated for credit. 12 total credits. 4 total completions.
Grading status: Letter grade.

STOR 493. Internship in Statistics and Operations Research. 3 Credits.
Requires permission of the department. Statistics and analytics majors only. An opportunity to obtain credit for an internship related to statistics, operations research, or actuarial science. Pass/Fail only. Does not count toward the statistics and analytics major or minor.
Gen Ed: EE- Academic Internship.
Repeat rules: May be repeated for credit. 6 total credits. 2 total completions.
Grading status: Pass/Fail.

STOR 496. Undergraduate Reading and Research in Statistics and Operations Research. 1-3 Credits.
Permission of the director of undergraduate studies. This course is intended mainly for students working on honors projects. May be repeated for credit.
Gen Ed: EE- Mentored Research.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 6 total credits. 6 total completions.
Grading status: Letter grade.

STOR 515. Dynamic Decision Analytics. 3 Credits.
An introduction to algorithms and modeling techniques that use knowledge gained from prior experience to make intelligent decisions in real time. Topics include Markov decision processes, dynamic programming, multiplicative weights update, exploration vs. exploitation, multi-armed bandits, and two player games.
Requisites: Prerequisites, STOR 435 or 535, and MATH 347.
Grading status: Letter grade.

STOR 520. Statistical Computing for Data Science. 4 Credits.
This course provides hands-on experience working with data sets provided in class and downloaded from certain public websites. Lectures cover basic topics such as R programming, visualization, data wrangling and cleaning, exploratory data analysis, web scraping, data merging, predictive modeling, and elements of machine learning. Programming analyses in more advanced areas of data science. Students may not receive credit for both STOR 320 and STOR 520.
Requisites: Prerequisites, STOR 435 or 535, and STOR 455.
Grading status: Letter grade.
STOR 535. Probability for Data Science. 3 Credits.
This course is an advanced undergraduate course in probability with
the aim to give students the technical and computational tools for
advanced courses in data analysis and machine learning. It covers
random variables, moments, binomial, Poisson, normal and related
distributions, generating functions, sums and sequences of random
variables, statistical applications, Markov chains, multivariate normal
and prediction analytics. Students may not receive credit for both STOR 435 and
STOR 535.
Requisites: Prerequisite, MATH 233.
Grading status: Letter grade.

STOR 538. Sports Analytics. 3 Credits.
This course will survey the history of sports analytics across multiple
areas and challenge students in team-based projects to practice sports
analytics. Students will learn how applied statistics and mathematics
help decision makers gain competitive advantages for on-field
performance and off-field business decisions.
Requisites: Prerequisite, STOR 320 or STOR 455.
Grading status: Letter grade.

STOR 555. Mathematical Statistics. 3 Credits.
Functions of random samples and their probability distributions,
introductory theory of point and interval estimation and hypothesis
testing, elementary decision theory.
Requisites: Prerequisite, STOR 435, or 535.
Grading status: Letter grade.

STOR 556. Time Series Data Analysis. 3 Credits.
This course covers the fundamental theory and methods for time
series data, as well as related statistical software and real-world data
applications. Topics include the autocorrelation function, estimation
and elimination of trend and seasonality, estimation and forecasting
procedures in ARMA models and nonstationary time series models.
Requisites: Prerequisites, STOR 435 or 535, and STOR 455.
Grading status: Letter grade.

STOR 557. Advanced Methods of Data Analysis. 3 Credits.
The course covers advanced data analysis methods beyond those
in STOR 455 and how to apply them in a modern computer package,
specifically R or R-Studio which are the primary statistical packages
for this kind of analysis. Specific topics include (a) Generalized Linear
Models; (b) Random Effects; (c) Bayesian Statistics; (d) Nonparametric
Methods (kernels, splines and related techniques).
Requisites: Prerequisites, STOR 435 or 535, and STOR 455.
Grading status: Letter grade.

STOR 565. Machine Learning. 3 Credits.
Introduction to theory and methods of machine learning including
classification; Bayes risk/rule, linear discriminant analysis, logistic
regression, nearest neighbors, and support vector machines; clustering
algorithms; overfitting, estimation error, cross validation.
Requisites: Prerequisites, STOR 215 or MATH 381, and STOR 435 or 535.
Grading status: Letter grade.

STOR 572. Simulation for Analytics. 3 Credits.
This upper-level-undergraduate and beginning-graduate-level course
introduces the concepts of modeling, programming, and statistical
analysis as they arise in stochastic computer simulations. Topics include
modeling static and discrete-event simulations of stochastic systems,
random number generation, random variate generation, simulation
programming, and statistical analysis of simulation input and output.
Requisites: Prerequisites, STOR 120 or 155, and STOR 435 or 535.
Grading status: Letter grade.

STOR 590. Special Topics in Statistics and Operations Research. 3
Credits.
Examines selected topics from statistics and operations research. Course
description is available from the department office.
Repeat rules: May be repeated for credit; may be repeated in the same
term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.

STOR 612. Foundations of Optimization. 3 Credits.
STOR 612 consists of three major parts: linear programming, quadratic
programming, and unconstrained optimization. Topics: Modeling, theory
and algorithms for linear programming; modeling, theory and algorithms
for quadratic programming; convex sets and functions; first-order and
second-order methods such as stochastic gradient methods, accelerated
gradient methods and quasi-Newton methods for unconstrained
optimization.
Requisites: Prerequisites, MATH 347 and 521 or permission of the
instructor.
Grading status: Letter grade.

STOR 614. Advanced Optimization. 3 Credits.
STOR 614 consists of three major parts: Integer programming, conic
programming, and nonlinear optimization. Topics: modeling, theory
and algorithms for integer programming; second-order cone and semidefinite
programming; theory and algorithms for constrained optimization;
dynamic programming; networks.
Requisites: Prerequisite, STOR 612 or equivalent (or permission of
instructor).
Grading status: Letter grade.

STOR 634. Probability I. 3 Credits.
Required preparation, advanced calculus. Lebesgue and abstract
measure and integration, convergence theorems, differentiation. Radon-
Grading status: Letter grade.

STOR 635. Probability II. 3 Credits.
Foundations of probability. Basic classical theorems. Modes of
probabilistic convergence. Central limit problem. Generating functions,
characteristic functions. Conditional probability and expectation.
Requisites: Prerequisite, STOR 634; permission of the instructor for
students lacking the prerequisite.
Grading status: Letter grade
Same as: MATH 635.

STOR 641. Stochastic Models in Operations Research I. 3 Credits.
Review of probability, conditional probability, expectations, transforms,
generating functions, special distributions, and functions of random
variables. Introduction to stochastic processes. Discrete-time Markov
chains. Transient and limiting behavior. First passage times.
Requisites: Prerequisite, STOR 435 or 535; permission from the instructor
for students lacking the prerequisite.
Grading status: Letter grade.

STOR 642. Stochastic Models in Operations Research II. 3 Credits.
Exponential distribution and Poisson process. Birth-death processes,
continuous-time Markov chains. Transient and limiting behavior.
Applications to elementary queueing theory. Renewal processes and
regenerative processes.
Requisites: Prerequisite, STOR 641.
Grading status: Letter grade.
STOR 654. Statistical Theory I. 3 Credits.
Grading status: Letter grade.

STOR 655. Statistical Theory II. 3 Credits.
Point estimation. Hypothesis testing and confidence sets. Contingency tables, nonparametric goodness-of-fit. Linear model optimality theory BLUE, MVU, MLE. Multivariate tests. Introduction to decision theory and Bayesian inference.
Requisites: Prerequisite, STOR 654.
Grading status: Letter grade.

STOR 664. Applied Statistics I. 3 Credits.
Grading status: Letter grade.

Requisites: Prerequisite, STOR 664; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

STOR 672. Simulation Modeling and Analysis. 3 Credits.
Introduces students to modeling, programming, and statistical analysis applicable to computer simulations. Emphasizes statistical analysis of simulation output for decision-making. Focuses on discrete-event simulations and discusses other simulation methodologies such as Monte Carlo and agent-based simulations. Students model, program, and run simulations using specialized software. Familiarity with computer programming recommended.
Requisites: Prerequisites, STOR 555 and 641.
Grading status: Letter grade
Same as: COMP 672.

STOR 690. Special Topics. 3 Credits.
Examines selected topics from statistics and operations research. Course description is available from the department office.
Repeat rules: May be repeated for credit. 12 total credits. 4 total completions.
Grading status: Letter grade.

STOR 691H. Honors in Statistics and Analytics. 3 Credits.
Permission of the department. Majors only. Individual reading, study, or project supervised by a faculty member.
Gen Ed: EE- Mentored Research.
Grading status: Letter grade.

STOR 692H. Honors in Statistics and Analytics. 3 Credits.
Permission of the department. Majors only. Individual reading, study, or project supervised by a faculty member.
Gen Ed: EE- Mentored Research.
Grading status: Letter grade.