DEPARTMENT OF
MICROBIOLOGY AND
IMMUNOLOGY (GRAD)

Contact Information
Department of Microbiology and Immunology
Visit Program Website (http://med.unc.edu/microimm)

William E. Goldman, Chair

The Department of Microbiology and Immunology, an administrative division of the School of Medicine, is a unit of The Graduate School. It offers instruction leading to the doctor of philosophy degree. A terminal master of science degree is granted only under special conditions. The department is highly regarded in many scientific disciplines, including immunology, microbial pathogenesis, virology, infectious diseases, host/pathogen interactions, molecular genetics, prokaryotic and eukaryotic molecular and cellular biology, and cancer biology. Research in the department is supported by funds from the University, the National Institutes of Health, the National Science Foundation, the American Cancer Society, and other private foundations and granting agencies.

Research Environment
The Department of Microbiology and Immunology consists of approximately 60 faculty members with active research laboratories, 60 graduate students, 90 postdoctoral scientists, 20 research staff, and 10 administrative staff, who together form a highly interactive, friendly, and collaborative community.

The department occupies the entire sixth floor (~25,000 net square feet) of the new Marsico Hall, as well as the recently renovated ninth floor of the Burnett-Womack Building. A significant number of faculty members who hold primary appointments in the department have laboratories in the nearby Lineberger Comprehensive Cancer Center as well as other departments within the School of Medicine and Gillings School of Global Public Health.

A variety of modern equipment is available in individual laboratories or shared by multiple users throughout the department. Well-equipped research laboratories are supplemented by specialized rooms dedicated to tissue culture, controlled temperature environments, BSL3 physical containment for research on microbial select agents, supervised animal care, etc. In addition, the University operates an extensive network of core facilities with major equipment and expert support staff, including flow cytometry, genomics, proteomics, oligonucleotide synthesis, DNA sequencing, X-ray crystallography, NMR, animal models (transgenic mouse and embryonic stem cell services), animal histopathology, bioinformatics, gene chips, confocal microscopy, electron microscopy, and mass spectrometry.

The department is fully supplied with high-speed Internet connections (both wired and wireless). University libraries provide electronic access to thousands of professional journals.

Admission
Students seeking admission to the Department of Microbiology and Immunology apply to BBSP, a common portal by which students interested in any of the 14 participating graduate programs begin their studies at UNC–Chapel Hill. To apply, prospective students should visit the BBSP (http://bbsp.unc.edu/admissions) and graduate admissions (http://gradschool.unc.edu/admissions) Web sites, fill out the online application, and select Microbiology and Immunology as their first choice of interest.

Financial Assistance
All Ph.D. students making satisfactory degree progress receive a stipend plus in-state tuition, fees, and health insurance. Funds are available from individual research grants, training grants, the department, and the University. Students are encouraged to apply for a predoctoral fellowship from the National Institute of Health, the National Science Foundation, or other organizations.

As is the case for all graduate students in the basic science departments of the UNC School of Medicine, education during the first year is under the guidance of the interdisciplinary Biological and Biomedical Sciences Program (BBSP). Students rotate through three different research laboratories of their choosing in year one. For students interested in microbiology and immunology, recommended classroom courses include Immunobiology (MCRO 614), Virology (MCRO 630), Microbial Pathogenesis I (MCRO 635), and Microbial Pathogenesis II (MCRO 640).

Upon choosing a dissertation laboratory and joining the Department of Microbiology and Immunology, students are provided with an outstanding learning environment, an opportunity to conduct cutting-edge research, and most importantly, thorough preparation for a successful career in science. The microbiology and immunology Ph.D. program is designed to provide a foundation of fundamental knowledge in modern microbiology and immunology, foster critical scientific thinking, develop written and oral communication skills, allow students to gain teaching experience, and offer opportunities to travel and present posters or talks at national meetings. Specific components of the microbiology and immunology Ph.D. training program include:

- Completion of six relevant courses, including two courses based directly on discussion of the primary literature (e.g., MCRO 710, MCRO 711, MCRO 712), and MCRO 795 are required. Students typically finish four of the six classes while in BBSP and the remainder during year two. There is no language requirement.
- The written preliminary exam (also known as the doctoral written examination) consists of an original non-thesis research proposal, written in a format similar to an NIH pre- or postdoctoral fellowship proposal. The proposal is written whenever the student likes over the course of the spring semester.
- The oral preliminary exam (also known as the doctoral oral examination) centers on the topic of the thesis project and provides an opportunity for the student to demonstrate his or her ability to discuss the fields of science related to the thesis proposal, as well as the ability to analyze problems and design experiments. The exam serves a dual purpose as the initial meeting of the thesis committee. Therefore, a separate decision to approve or disapprove the thesis project will occur in the same meeting.

Students must regularly attend weekly student and departmental seminars (MCRO 701) beginning in year two and present their research annually in the student seminar series beginning in year three.

Students act as teaching assistants for two semesters in department-approved courses, typically in years two and three.
Students form a dissertation committee in the middle of year three, obtain approval of their dissertation project, and meet annually with their committee to discuss research progress. Completion of sufficient original research for at least two first-author papers in high-quality peer reviewed journals is expected. As a minimum standard, to earn the Ph.D. degree we require that

• A student must make meaningful contributions to and be an author on at least two manuscripts intended for publication in respected, high-quality professional journals or books,
• At least one of the two manuscripts must be accepted for publication, and
• Prior to the private Ph.D. defense, a student must have peer reviews returned for at least one first- (or co-first) author primary research manuscript.

Following the faculty member’s name is a section number that students should use when registering for independent studies, reading, research, and thesis and dissertation courses with that particular professor.

Professors

Ralph Baric (76), Molecular Mechanisms of Virus Cross-Species Transmissibility and Systems Genetics and Pathogenesis

Robert Bouret (64), Signal Transduction in Bacteria

Miriam Braunstein (80), Bacterial Pathogenesis, Molecular Genetics, Tuberculosis

Wesley Burks (102), Allergic Diseases, Mechanisms and Immunotherapy

Bruce Cairns (93), Immune Response to Injury, Cellular Immunology, Transplantation

Myron S. Cohen (55), Biology and Epidemiology of Transmission of STD Pathogens (Including HIV)

Peggy Cotter (97), Microbial Pathogenesis, Molecular Genetics, Protein Secretion

Blossom Damania (79), Kaposi’s Sarcoma-Associated Herpesvirus (KSHV/HHV-8), Rhesus Monkey Rhadinovirus (RRV)

Jeff Dangl (87), Plant Genetics, Plant Microbiome, Plant Disease Resistance and Cell Death Control, Bacterial Type III Secretion Systems

Toni Darville (117), Chlamydia Trachomatis Pathogenesis and Immune Protective Mechanisms

Aravinda de Silva (73), Arthropod Vector-Borne Infectious Diseases and Microbial Pathogenesis

Dirk Dittmer (88), West Nile Virus (WNV) and Kaposi’s Sarcoma-Associated Herpesvirus (KSHV/HHV-8)

Gianpietro Dotti (112), Cancer Immunotherapy, Genetic Engineering; T-Cell Therapies, Tumor Microenvironment

J. Victor Garcia-Martinez (101), Viral Pathogenesis/Immunology, Humanized Mice, HIV/AIDS

Peter H. Gilligan (51), Bacterial Toxins, Clinical Microbiology

William E. Goldman (95), Pathogenesis of Respiratory Tract Infections: Histoplasmosis, Pertussis, and Plague

Jack Griffith (35), Chromosome Structure: Viruses and Their Host Cells

Mark Heise (83), Molecular Genetics of Viral Pathogenesis

Ilona Jaspers (106), Respiratory Viruses, Host Innate Defense in the Respiratory Mucosa, Virus-Host Cell Interaction, Epithelial-Immune Cell Interaction, Environmental Effects

Tal Kafri, Development of HIV-Based Vector for Gene Therapy, Epigenetics of HIV and HIV-1 Vectors, Basic Biology of Nonintegrating HIV-1 and HIV-1 Vectors

Stanley M. Lemon (59), Molecular Virology, Innate Immunity, Viral Carcinogenesis

Zhi Liu (91), Biochemistry, Cell Biology, and Immunology of Hemidesmosome and Basement Membrane

David M. Margolis (90), Regulation of Gene Expression, Molecular Biology of Retroviruses, HIV Pathogenesis

Steven R. Meshnick (81), Malaria and Tick-Borne Diseases, Molecular Epidemiology, Pathogenesis, Drug Resistance

Virginia L. Miller (96), Molecular and Genetic Analysis of Microbial Pathogenesis, Virulence Gene Regulation, Host-Pathogen Interactions

Robert A. Nicholas (94), Antibiotic Resistance Mechanisms, Bacterial Genetics, Neisseria gonorrhoeae

Joseph S. Pagano (14), Epstein-Barr Virus and Ubiquitin-Proteasomal Systems, Interferon Regulatory Factors, Invasion and Metastasis and Antiviral Drugs

David Peden, Translational and Clinical Research in Environmental Lung Disease

Matthew Redinbo, Structural and Chemical Biology of Host-Pathogen Interactions

Howard M. Reisner (32), Immunogenetics of Human Plasma Proteins (Particularly IgG and Coagulant Factors VII and IX)

R. Balfour Sartor (77), Etiology and Pathogenesis of Inflammatory Bowel Disease (especially Crohn’s Disease and Associated Extraintestinal Manifestations)

Barbara Savoldo (121), Cancer Immunotherapy, T cell viral immunity, T cells based therapies

Jonathan Serody (82), Transplantation and Tumor Immunology

Lishan Su (71), Immune Development, Viral Pathogenesis

Ronald Swanstrom (74), Molecular Biology and Pathogenesis of HIV

Jenny P. Ting (50), Molecular Immunology, Transcription, Signal Transduction, Apoptosis, Neuroimmunology, Transplantation

Roland Tisch (70), Immune Tolerance, T-Cell Antigen Recognition, T-Cell Mediated Autoimmunity, Tumor Antigen-Specific Genetic Vaccines, Type 1 Diabetes

Jennifer Webster-Cyriaque (84), Oral Manifestations of Systemic Disease, Host-Virus Interactions, Viral Oncogenesis, Viral Pathogenesis during Immunosuppression, Signal Transduction, Cellular Biology, Gene Expression

William J. Yount (25), Genetic Control of Antibody Response and Gamma Globulin Synthesis in Humans

Associate Professors

Kristy Ainslie (120), Formulation of Vaccines and Drug Delivery

Treatments for Immune Modulation to Treat and Prevent Infectious and Other Diseases

Kristina DeParis (98), Neonatal/Pediatric Immunology; Pathogenesis of Infectious Diseases; HIV and Co-Infections

Jonathan Hansen (110), Inflammatory Bowel Disease, Host-Microbe Interactions, Microbial Adaptation/Evolution, Experimental Colitis

Sam Lai (105), Mucosal Immunity, Antibody Engineering, Antibody Response to Nanomaterials, Targeted Drug Delivery, Bacteriophage Engineering, Vaccines

Glenn Matsushima (68), Molecular Neuroimmunology, Innate Immunity

Edward Miao (107), Innate Immune Detection of Microbial Virulence

Cary Moody (103), Pathogenesis of Human Papillomaviruses

Nathaniel Moorman (104), Molecular Virology, Host Pathogen Interactions, HCMV Pathogenesis

Raymond Pickles (86), Respiratory Viruses, Host Innate Defense in the Airway, Virus-Host Cell Interactions, Gene Therapy for Cystic Fibrosis and Other Lung Diseases

Elizabeth Shank (111), Microbial Interactions

Rita Tamayo (100), Microbial Pathogenesis, Bacterial Genetics, Bacterial Gene Regulation
Barbara J. Vilen (78), Molecular Immunology, Signal Transduction, and B Cell Tolerance
Yisong Wan (103), Regulatory T-Cell and TGF-Beta Signaling Controlled T-Cell Function under Normal and Pathological Conditions
Jason Whitmore, Viral Immunology, Memory T-Cell Differentiation, Vaccines, Inflammation, Microbial Immunology
Matthew C. Wolfgang (89), Microbial Pathogenesis, Bacterial Gene Regulation, Host-Pathogen Interactions
David Zaharoff (119), Vaccine and Immunotherapy Delivery Platforms

Assistant Professors
Janelle Arthur (113), Microbiota, Inflammation and Innate Immunity, Colorectal Cancer
Brian Conlon (115), Antibiotic Resistance, Bacteriology
Nilu Goonetilleke (116), T-Cell Immunology, HIV-1 Immunobiology
Matthew Hirsch, AAV Gene Therapy, Gene Editing, Cellular Response to Foreign DNA
Helen Lazen (114), Innate Immune Mechanisms That Control Flavivirus Pathogenesis
Bo Li (122), Chemical Biology of Bacteria-Host Interactions, Antibiotic Biosynthesis and Discovery
Uma Nagarajan (118), Innate Immune Response to Chlamydia Infection and Its Role in Pathogenesis
Benjamin Vincent (123), How Immunogenomics Features Including T-Cell Receptor and B-Cell Receptor Repertoire Characteristics Predict Survival and Response to Immunotherapy in Breast Cancer, Bladder Cancer, and Acute Myeloid Leukemia

Research Professors
Nancy C. Fisher, Flow Cytometry
Marcia M. Hobbs, Pathogenesis of Nonviral Sexually Transmitted Infections (Trichomonas vaginalis, Neisseria gonorrhoeae) and Molecular Diagnostics

Research Associate Professor
Julie A. E. Nelson, Molecular Virology, HIV Evolution and Pathogenesis, HCV Co-Infection, HIV Assay Development and HIV Clinical Trial Virology

Research Assistant Professors
W. June Brickey, Host Immune Responses, Radiation Injury, Expression Profiling
Sarah Joseph
Premkumar Lakshmanan, Structural Biology, Protein Engineering, Diagnostics Development, Drug Design, Antibacterial Discovery
Robert Maile, Cellular Immunology, Burn Immunology, Transplantation, T-Cell Regulation, Bacterial and Viral Infectivity
Karen McKinnon, Dendritic Cell Induction of Tumor Specific CD4 and CD8 T Lymphocytes
Sarah Rowe-Conlon, Antibiotic Mechanism of Action, Chronic Relapsing Bacterial Infections, Antibiotic Tolerance
Sang-Hoon Sin, Mouse Models of Viral Lymphoma
Shaomin Tian, Nanoparticle-Mediated Drug Delivery, Nano-Vaccine Formulation for Infectious Diseases and Cancer Immunotherapy
Kimberly Walker, Microbial Pathogenesis, Bacterial Gene Regulation
Christopher Whitehurst, Epstein-Barr Virus, Ubiquitination/Deubiquitination Processes

Adjunct Assistant Professor
Jennifer Martinez

Professors Emeriti
Steven L. Bachenheimer
Kenneth F. Bott
Janne G. Cannon
Marshall H. Edgell
Susan A. Fiscus
Jeffrey A. Frelinger
Jean Handy
Clyde A. Hutchinson III
Robert E. Johnston
David G. Klapper
John E. Newbold
Nancy Raab-Traub
P. Frederick Sparling

MCRO
Advanced Undergraduate and Graduate-level Courses
MCRO 449. Introduction to Immunology. 3 Credits.
This course provides a general overview of the evolution, organization, and function of the immune system. Instruction will be inquiry-based with extensive use of informational and instructional technology tools.
Requisites: Prerequisite, BIOL 205; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade
Same as: BIOL 449.

MCRO 614. Immunobiology. 3 Credits.
A strong background in molecular biology, eukaryotic genetics, and biochemistry is required. Advanced survey course with topics that include molecular recognition, genetic mechanisms of host resistance, development of cells and cell interactions; hypersensitivity, autoimmunity, and resistance to infection. Course material from textbook and primary literature.
Grading status: Letter grade.

MCRO 630. Virology. 3 Credits.
Required preparation, coursework in molecular biology and cell biology. Current concepts of the chemistry, structure, replication, genetics, and the natural history of animal viruses and their host cells.
Grading status: Letter grade.

MCRO 631. Advanced Molecular Biology I. 3 Credits.
Required preparation for undergraduates, at least one undergraduate course in both biochemistry and genetics. DNA structure, function, and interactions in prokaryotic and eukaryotic systems, including chromosome structure, replication, recombination, repair, and genome fluidity. Three lecture hours a week.
Grading status: Letter grade
Same as: GNET 631, BIOC 631, BIOL 631.

MCRO 632. Advanced Molecular Biology II. 3 Credits.
Required preparation for undergraduates, at least one undergraduate course in both biochemistry and genetics. The purpose of this course is to provide historical, basic, and current information about the flow and regulation of genetic information from DNA to RNA in a variety of biological systems. Three lecture hours a week.
Grading status: Letter grade
Same as: GNET 632, BIOC 632, BIOL 632.
MCRO 635. Microbial Pathogenesis I. 3 Credits.
Permission of the instructor. Required preparation, coursework in
molecular biology and genetics. Topics will include aspects of basic
bacteriology as well as bacterial and fungal pathogens and mechanisms
of disease.
Grading status: Letter grade.

MCRO 640. Microbial Pathogenesis II. 3 Credits.
Permission of the instructor or a fundamental understanding of
molecular virology and immunology. Molecular pathogenesis, with a
primary focus on viral pathogens. Additional topics include vaccines and
genetics of host-pathogen interactions.
Grading status: Letter grade.

MCRO 690. Special Topics in Microbiology or Immunology. 1-15 Credits.
Permission of the department except for department majors. Designed to
introduce the student to research methods. Minor investigative problems
are conducted with advice and guidance of the staff. Hours and credit to
be arranged, any term. May be repeated for credit two or more semesters.
Repeat rules: May be repeated for credit; may be repeated in the same
term for different topics; 15 total credits. 5 total completions.
Grading status: Letter grade.

Graduate-level Courses

MCRO 701. Seminar in Microbiology and Immunology. 1 Credit.
Faculty and student seminars on current research in microbiology and
immunology.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

MCRO 702. Seminar in Microbiology. 1 Credit.
Seminar on selected topics in microbiology.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

MCRO 710. Seminar/Tutorial in Bacterial and Eukaryotic Microbes. 1-15
Credits.
One or two faculty and a small number of students will consider current
research of importance in depth. Emphasis is on current literature, invited
speakers, etc., rather than textbooks.
Repeat rules: May be repeated for credit. 15 total credits. 15 total
completions.
Grading status: Letter grade.

MCRO 711. Seminar/Tutorial in Animal Virology. 1-15 Credits.
One or two faculty and a small number of students consider current
research of importance in depth. Emphasis is on current literature, invited
speakers, etc., rather than textbooks.
Repeat rules: May be repeated for credit. 15 total credits. 99 total
completions.
Grading status: Letter grade.

MCRO 712. Seminar/Tutorial in Immunology. 1-15 Credits.
One or two faculty and a small number of students consider current
research of importance in depth. Emphasis is on current literature, invited
speakers, etc., rather than textbooks.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

MCRO 721. Refresher Training in the Responsible Conduct of Research. 1
Credit.
MCRO 721 is a modular course that meets the requirements of the
National Institutes of Health for refresher training in the Responsible
Conduct of Research. The course involves a mixture of assigned
readings, formal presentations by department faculty who are active in
research, and small group discussions. The course grade is based on
attendance and participation.
Grading status: Letter grade.

MCRO 790. Directed Readings in Prokaryotic Molecular Biology. 1 Credit.
Permission of the instructor or one prior prokaryotic molecular biology
course. Directed readings in prokaryotic molecular biology under the
direction of a member of the graduate faculty. May be repeated for credit.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

MCRO 791. Directed Readings in Virology. 1 Credit.
Permission of the instructor or one prior virology course. Directed
readings in virology under the direction of a member of the graduate
faculty. May be repeated for credit.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

MCRO 792. Directed Readings in Immunology. 1 Credit.
Permission of the instructor or one prior immunology course. Directed
readings in immunology under the direction of a member of the graduate
faculty. May be repeated for credit.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

MCRO 795. Research Concepts. 2 Credits.
Permission of the instructor. This course will provide multiple
opportunities for the student to write parts of hypothesis-based
proposals, receive substantial feedback, and to rewrite the text. There will
be approximately twelve single-page writing assignments.
Grading status: Letter grade.

MCRO 901. Research in Microbiology or Immunology. 1-15 Credits.
Permission of the department. Designed to introduce the student to
research methods and special techniques. Short-term problems are
conducted with the advice and guidance of the staff. May be repeated for
credit.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

MCRO 993. Master's Research and Thesis. 3 Credits.
MCRO 994. Doctoral Research and Dissertation. 3 Credits.