DEPARTMENT OF ENVIRONMENTAL SCIENCES AND ENGINEERING (GRAD)

The Department of Environmental Sciences and Engineering in the Gillings School of Global Public Health focuses on the interface between people and the environment. Uniquely situated in a school of public health, the department combines the physical sciences, health sciences, engineering, and policy to develop solutions to current and emerging environmental challenges, both globally and locally. This includes climate and environmental change, emerging contaminants, infectious agents and their impacts on health and equity. This multidisciplinary approach provides unique academic and research opportunities for students.

WE WORK TO

- Understand environmental transport and transformation of chemicals and infectious agents
- Elucidate mechanisms by which chemicals and infectious agents influence human health
- Engineer solutions that mitigate the impacts of climate change on air, water, and health; and
- Protect vulnerable populations from toxic exposures.

Our faculty bring expertise in the physical and life sciences, engineering, and policy. We work both locally and globally, in occupational and environmental settings, on issues relevant to air quality, water, health, energy, and resource management. We aim to create a healthy, sustainable, and equitable future.

The wide scope of departmental research is reflected in the three interdisciplinary fields of study, faculty's areas of research, and affiliated labs and research institutes. The three interdisciplinary fields of study are: Air Quality and Atmospheric Processes, Human Exposure and Health Effects, and Sustainable Water Resources.

Air Quality and Atmospheric Processes
Atmospheric processes have a major influence on air quality, as well as on long-term global processes such as climate change. Over the past 30 years, major research contributions of our faculty and students include the generation of an experimental database used to develop and test photochemical mechanisms that contribute to air pollution; development of methods to measure and monitor airborne contaminants; and the development and application of occupational exposure models.

Human Exposure and Health Effects
Our faculty study the range of processes that ultimately lead to environmentally-related diseases, from characterizing and quantifying human exposure to understanding the cellular, molecular and biochemical underpinnings of these diseases. Major research activities include: developing methods to measure and monitor chemical or microbial contaminants; and elucidating the genetic and epigenetic factors that lead to differences in disease outcomes among individuals or populations.

Sustainable Water Resources
Population growth and economic development continue to place increasing stress on global water resources, stresses that stem primarily from rising consumptive demands for limited supplies and increasing contamination of natural waters. Our faculty seek solutions to these challenges using a variety of computational, experimental, and field approaches. Our research results improve engineering applications and provide substantive guidance to policymakers.

Our research strengths include:

- Characterizing exposures to contaminants in air, water, soil, and workplaces
- Developing engineering and policy solutions to reduce environmental risks
- Using molecular approaches to understand disease mechanisms caused by toxic substances in the environment
- Overcoming environmental health challenges in developing countries

Learn more (https://sph.unc.edu/envr/department-research/)

ESE Course Competencies Mapped
Each degree in our department is mapped to five degree-specific competencies that are taught and assessed in specific courses or other learning opportunities. Learn more (https://sph.unc.edu/ese-course-competencies/)

Resources for Current ESE Students
Current Environmental Sciences and Engineering (ESE) students can find department resources here (https://sph.unc.edu/envr/current-student-resources/).

Master of Science in Environmental Sciences and Engineering (M.S.)
The master of science (M.S.) in the Department of Environmental Sciences and Engineering prepares students who are interested in advanced education or careers in research, practice or management in the field of environmental sciences and engineering. Students perform research leading to a thesis and potentially publishable work.

Course Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHG 600</td>
<td>Introduction to Public Health</td>
<td>1</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>Seminar Series</td>
<td>1</td>
</tr>
<tr>
<td>ENVR 601</td>
<td>Epidemiology for Environmental Scientists</td>
<td>2</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>Additional formal coursework (400 level or higher). Can include</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>credits from Research skill course(s), if applicable (not including</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENVR 400, 991, 993).</td>
<td></td>
</tr>
<tr>
<td>ENVR 991</td>
<td>Research in Environmental Sciences and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 993</td>
<td>Master’s Research and Thesis</td>
<td>3</td>
</tr>
<tr>
<td>Minimum Hours</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

1 Students with a prior public health degree are not required to take SPHG 600; exemptions are available for those with non-public health degrees from accredited SPHs. Students should discuss with their Academic Coordinator.

2 A minimum of 24 credits of graduate-level course work, which includes at least 15 credit hours of ENVR courses at the 400 level or above (to
be determined by the student and faculty mentor) and excludes ENVR 400, 491, and 493.

Milestones
- Master’s Committee
- Thesis/Substitute Defense (Master’s Comprehensive Exam)
- Master’s Thesis Approved
- Residence Credit
- Exit Survey
- Master’s Competency Review (mastery of one research skill)

Master of Science in Environmental Engineering (M.S.E.E.), Professional & Research Options
The master of science in environmental engineering (M.S.E.E.) in the Department of Environmental Sciences and Engineering is a program that gives students a Professional option (one year) or a Research option (two year) degree that gives students the vital skills and training needed to solve 21st century environmental engineering and public health challenges.

Course Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHG 600</td>
<td>Introduction to Public Health</td>
<td>1</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>Seminar Series</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 601</td>
<td>Epidemiology for Environmental Scientists or EPID 600 Principles of Epidemiology for Public Health</td>
<td>3</td>
</tr>
<tr>
<td>Additional formal coursework (400 level or higher). Can include credits from Research skill course(s), if applicable (not including ENVR 400, 991, 992).</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Electives
- 12 or more credits at 400 level or higher. See approved list of Engineering Elective Options below. | 12 |

Thesis/Substitute or Dissertation
- ENVR 992 Master’s Technical Report | 3 |

Minimum Hours | 31 |

1 Students with a prior public health degree are not required to take SPHG 600; exemptions are available for those with non-public health degrees from accredited SPHs. Students should discuss with their Academic Coordinator.

2 An undergraduate or graduate course in Statistics, and one in Biological Sciences must be taken if such courses have not been taken in the past e.g., in another institution. These can count toward graduation credits if they are 400 level or above.

3 Students completing the Professional option must specifically register for ENVR 992 section 003 (ENVR 992.003) and associated Oral Comprehensive Exam and Technical Report. Students completing the Research option must specifically register under their faculty mentor’s section of ENVR 992.

4 A minimum of 24 credits of graduate-level course work, which includes at least 15 credit hours of ENVR courses at the 400 level or above (to be determined by the student and faculty mentor) and excludes ENVR 400, 491, and 493.

Engineering Elective Course Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 416</td>
<td>Aerosol Physics and Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ENVR 451</td>
<td>Introduction to Environmental Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 453</td>
<td>Groundwater Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 468</td>
<td>Temporal GIS and Space/Time Geostatistics for the Environment and Public Health</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 500</td>
<td>Environmental Processes, Exposure, and Risk Assessment</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 525</td>
<td>Water, Sanitation, Hygiene, and Global Health</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 582</td>
<td>Sanitation for Development</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 666</td>
<td>Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 671</td>
<td>Environmental Physics I</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 672</td>
<td>Environmental Physics II</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 675</td>
<td>Air Pollution, Chemistry, and Physics</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 755</td>
<td>Analysis of Water Resource Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 756</td>
<td>Physical/Chemical Treatment Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 759</td>
<td>Multiphase Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 760</td>
<td>Uncertainty Quantification for Environmental Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 765</td>
<td>Space Time Exposure Mapping and Risk Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>

Milestones
- Master’s Committee (Master’s Thesis/Substitute Defense)
- Master’s Oral Exam / Approved Substitute
- Master’s Thesis Substitute
- Residence Credit
- Exit Survey

Public Health, Master's Program (M.P.H.) – Environment, Climate, and Health Concentration

Prospective students in the Environment, Climate and Health Concentration (https://sph.unc.edu/resource-pages/master-of-public-health/environment-climate-and-health-concentration/) understand that the health of the planet and the health of its people are inextricably linked. They aim to contribute innovative solutions to complex environment, climate, and health challenges: health equity in the transition to clean energy, safe drinking water for vulnerable populations, protection from infection where we work and play, economically feasible actions with co-benefits for public health and climate sustainability. If you wish to work towards creating a healthy, sustainable, and equitable future as a public health professional, this Gillings MPH concentration is designed for you. The Environment, Climate and Health Concentration, housed in the Gillings School of Global Public Health and Department of Environmental Sciences and Engineering, will equip you with skills and know-how to identify and mitigate the adverse impacts of climate and environmental change on human health. Through a highly tailored curriculum and real-world experience, our students develop broadly applicable skills to address a range of exposure risks and sources. We welcome those interested in both local and global challenges.
UNC undergrads apply to the M.P.H. – Environment, Climate and Health concentration using a separate process:

- Current UNC seniors wishing to apply for an M.P.H. with an Environment, Climate and Health Concentration should submit a formal application to the program using this Graduate School link (http://go.unc.edu/UNCSeniorApplyMPHEHS/).
- Current UNC juniors should use this pre-admission application link (http://go.unc.edu/UNCJuniorApplyMPHEHS/).
- Details about ESE’s Accelerated bachelor's-to-master's programs can be found here: https://sph.unc.edu/envr/bachelors-to-masters-programs/

Course Requirements
Requirements for the M.P.H. degree in the Environment, Climate and Health concentration.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.P.H. Integrated Core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPHG 711</td>
<td>Data Analysis for Public Health</td>
<td>2</td>
</tr>
<tr>
<td>SPHG 712</td>
<td>Methods and Measures for Public Health Practice</td>
<td>2</td>
</tr>
<tr>
<td>SPHG 713</td>
<td>Systems Approaches to Understanding Public Health Issues</td>
<td>2</td>
</tr>
<tr>
<td>SPHG 701</td>
<td>Leading from the Inside-Out</td>
<td>2</td>
</tr>
<tr>
<td>SPHG 721</td>
<td>Public Health Solutions: Systems, Policy and Advocacy</td>
<td>2</td>
</tr>
<tr>
<td>SPHG 722</td>
<td>Developing, Implementing, and Evaluating Public Health Solutions (MPH Comprehensive Exam administered in class)</td>
<td>4</td>
</tr>
<tr>
<td>M.P.H. Practicum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPHG 703</td>
<td>MPH Pre-Practicum Assignments</td>
<td>0.5</td>
</tr>
<tr>
<td>SPHG 707</td>
<td>MPH Post-Practicum Assignments</td>
<td>0.5</td>
</tr>
<tr>
<td>M.P.H. Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVR 430</td>
<td>Health Effects of Environmental Agents</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 500</td>
<td>Environmental Processes, Exposure, and Risk Assessment</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 580</td>
<td>Policy Design for Environment, Climate, and Health Assessments</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 775</td>
<td>Global Climate Change: Interdisciplinary Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>Graduate-level ENVR Discipline Depth Course</td>
<td>Fall 2</td>
<td>2</td>
</tr>
<tr>
<td>Graduate-level ENVR Discipline Depth Course</td>
<td>Fall 2</td>
<td>3</td>
</tr>
<tr>
<td>M.P.H. Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective (Graduate-level courses, 400+ level at Gillings, 500+ level at UNC)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective (Graduate-level courses, 400+ level at Gillings, 500+ level at UNC)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective (Graduate-level courses, 400+ level at Gillings, 500+ level at UNC)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M.P.H. Culminating Experience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVR 992</td>
<td>Master’s Technical Report</td>
<td>3</td>
</tr>
</tbody>
</table>

Minimum Hours 42

Competencies
Students will develop the following Environment, Climate and Health competencies, building on the foundational public health knowledge they attain in the Gillings M.P.H. Integrated Core courses.

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHS01.</td>
<td>Weigh the scientific basis of hazard identification, exposure and health risk assessment to support management of environment, climate and health</td>
</tr>
<tr>
<td>EHS02.</td>
<td>Evaluate the causal relationships linking sources of environmental contaminants through processes that affect movement, transformations, exposure pathways, effects and vulnerabilities and use these relationships to inform actions for public health and health equity</td>
</tr>
<tr>
<td>EHS03.</td>
<td>Describe and critically evaluate the rational for and approaches used to measure and model properties of environmental/human systems</td>
</tr>
<tr>
<td>EHS04.</td>
<td>Evaluate effective actions or interventions that improve environment and climate-related outcomes and be able to compare the design of policy options to achieve those outcomes</td>
</tr>
<tr>
<td>EHS05.</td>
<td>Examine and critique the ethical and legal dimensions of environment, climate and health-related actions on individuals and communities</td>
</tr>
</tbody>
</table>

Admissions
Please visit Applying to the Gillings School (https://sph.unc.edu/students/how-to-apply/) first for details and information. Application to the residential M.P.H. is a 2-step process. Please apply separately to (1) SOPHAS and (2) UNC–Chapel Hill (via the Graduate School application). Visit the Graduate School website (https://gradschool.sites.unc.edu/master-of-public-health/) for more details. If you are interested in the online M.P.H., please visit the MPH@UNC (https://onlinemph.unc.edu/) website and fill out an inquiry form.

Milestones
- Master’s Committee
- Master’s Written Examination/Approved Substitute (Comprehensive Exam)
- Thesis Substitute (Culminating Experience)
- Residence Credit
- Exit Survey
- Master’s Professional Work Experience (Practicum)
Environmental Sciences and Engineering, Doctoral Program (Ph.D.)

The Ph.D., a terminal degree, is intended for incoming students with a strong background in the sciences or engineering and prepares them for careers in basic and applied research, education, or management in the field of environmental sciences and engineering. Applicants should have a strong background in the sciences, math or engineering with interest and aptitude for original and significant research; focused written statement should convey a motivation for research; strong academic record; strong letters of recommendation.

Course Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHG 600</td>
<td>Introduction to Public Health ¹</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>Seminar Series (Two semesters for 2 credits)</td>
<td>2</td>
</tr>
<tr>
<td>EPID 600</td>
<td>Principles of Epidemiology for Public Health</td>
<td>3</td>
</tr>
<tr>
<td>or ENVR 601</td>
<td>Epidemiology for Environmental Scientists</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 703</td>
<td>Proposal Writing for Environmental Research ²</td>
<td>3</td>
</tr>
<tr>
<td>ENVR 704</td>
<td>Critical Analysis of Environmental Research (Must be taken twice, preferably during the first and second years.)</td>
<td>2</td>
</tr>
<tr>
<td>ENVR 991</td>
<td>Research in Environmental Sciences and Engineering ³</td>
<td>6</td>
</tr>
</tbody>
</table>

Electives

15 credits for “depth of knowledge in a discipline” (approved by candidate and committee).

Thesis/Substitute or Dissertation

ENVR 994 Doctoral Research and Dissertation (Two semesters for 6 credits) 6

Minimum Hours

40

¹ Students with a prior public health degree are not required to take SPHG 600; exemptions are available for those with non-public health degrees from accredited SPHs. Students should discuss with their Academic Coordinator.

² To be taken when student is ready to write dissertation proposal.

³ Students should register for ENVR 991 each semester they are doing research and may register for 1-9 total credit hours per semester.

Milestones

The following list of milestones (non-course degree requirements) must be completed; view this list of standard milestone definitions (https://catalog.unc.edu/graduate/degree-programs/#milestonestext) for more information.

- Doctoral Committee
- Doctoral Oral Comprehensive Exam
- Doctoral Written Exam
- Prospectus Oral Exam
- Advanced to Candidacy
- Dissertation Defense
- Doctoral Dissertation Approved/Format Accepted
- Residence Credit
- Exit Survey

ENVR

Advanced Undergraduate and Graduate-level Courses

ENVR 400. Seminar Series. 0.5-1 Credits.

Presents results of ongoing research projects in the Department of Environmental Sciences and Engineering. Topics and presenters are selected from among departmental graduate students and faculty. Student presenters learn how to present their research to a lay audience while students taking the class for credit learn how to critique a presentation as well as forge professional collaborations across disciplines. Undergraduates may not enroll without first discussing their participation, and obtaining approval from the instructor.

Rules & Requirements

Repeat Rules: May be repeated for credit. 2 total credits. 4 total completions.

Grading Status: Letter grade.

ENVR 403. Environmental Chemistry Processes. 3 Credits.

Required preparation, a background in chemistry and mathematics, including ordinary differential equations. Chemical processes occurring in natural and engineered systems: chemical cycles; transport and transformation processes of chemicals in air, water, and multimedia environments; chemical dynamics; thermodynamics; structure/activity relationships.

Rules & Requirements

Requisites: Pre- or corequisite, CHEM 261.

Grading Status: Letter grade.

Same as: ENEC 403, CHEM 403.

ENVR 404. Life Cycle Assessment: Energy and the Environment. 3 Credits.

A systems approach to dealing with environmental pollution problems is highlighted and Life Cycle Assessment (LCA) is introduced as an assessment tool. Topics include basic environmental interactions; biogeochemical cycles and environmental impacts (global, regional, and local); and application of LCA to waste management and energy conversion systems; are addressed.

Rules & Requirements

Grading Status: Letter grade.

ENVR 411. Laboratory Techniques and Field Measurements. 3 Credits.

Students learn laboratory, field, and analytical skills. Provides a solid introduction to experimental research in environmental sciences and engineering. Students are provided with applications in limnology, aquatic chemistry, and industrial hygiene.

Rules & Requirements

Grading Status: Letter grade.

ENVR 412. Ecological Microbiology. 3 Credits.

Required preparation, one course in general microbiology. A description of microbial populations and communities, the environmental processes they influence, and how they can be controlled to the benefit of humankind.

Rules & Requirements

Grading Status: Letter grade.
ENVR 413. Limnology. 3 Credits.
Required preparation, introductory biology, chemistry, and physics.
Basic aspects of freshwater ecosystem function. Emphasis on trophic-
level interactions and integration of physical, chemical, and biological
principles for a holistic view of lake ecosystem dynamics.

Rules & Requirements
Grading Status: Letter grade.

ENVR 416. Aerosol Physics and Chemistry. 4 Credits.
Permission of the instructor for nonmajors. Physical and chemical
principles underlying behavior of particles suspended in air. Topics
include rectilinear and curvilinear motion of the particles in a force field,
diffusion, evaporation, and condensation, electrical and optical properties,
and particle coagulation. Three lecture hours a week and two laboratory
sessions.

Rules & Requirements
Grading Status: Letter grade.

ENVR 417. Oceanography. 3 Credits.
Required preparation, major in a natural science or two courses in
natural sciences. Studies origin of ocean basins, seawater chemistry
and dynamics, biological communities, sedimentary record, and
oceanographic history. Term paper. Students lacking science background
should see EMES 103. Students may not receive credit for both
EMES 103 and EMES 401. Course previously offered as GEOL 403/MASC
401.

Rules & Requirements
Grading Status: Letter grade.
Same as: EMES 401, BIOL 350.

ENVR 419. Chemical Equilibria in Natural Waters. 3 Credits.
Principles and applications of chemical equilibria to natural waters. Acid-
base, solubility, complex formation, and redox reactions are discussed.
This course uses a problem-solving approach to illustrate chemical
speciation and environmental implications. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 421. Environmental Health Microbiology. 3 Credits.
Required preparation: introductory course in microbiology or
permission of the instructor. This course covers microbes of public
health importance in water, wastewater, and other environmental
matrices, including detection, quantification, transport, and survival in
environmental media; control measures to reduce exposures; quantitative
microbial risk assessment; and the epidemiology of infectious diseases
transmitted via the environment.

Rules & Requirements
Grading Status: Letter grade.

ENVR 423. Industrial Toxicology. 3 Credits.
Toxicological assessment of and a case presentation of related exposure
is given. A conceptual approach is utilized to design appropriate
programs to prevent worker ill health due to toxicant exposure.

Rules & Requirements
Requisites: Prerequisite, ENVR 430, or permission of the instructor.
Grading Status: Letter grade.

ENVR 425. Introduction to Health Physics: Radiation and Radiation
Protection. 3 Credits.
This course concentrates on fundamentals of radiation and protection,
including types of radiation, radioactive decay, interaction with matter,
biological effects, detection and measurement, protection methods/
techniques, external and internal dose, etc. Lectures include hazards
in categories of environmental radiation, nuclear energy, medical
applications, industrial uses, etc.

Rules & Requirements
Grading Status: Letter grade.

ENVR 430. Health Effects of Environmental Agents. 3 Credits.
Required preparation, basic biology, chemistry through organic, calculus.
Permission of the instructor for students lacking this preparation.
Interactions of environmental agents (chemicals, infectious organisms,
radiation) with biological systems including humans, with attention to
routes of entry, distribution, metabolism, elimination, and mechanisms of
adverse effects. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 431. Techniques in Environmental Health Sciences. 2 Credits.
Required preparation, basic biology, chemistry through organic, math
through calculus; permission of the instructor for students lacking this
preparation. A practical introduction to the measurement of biological
end-points, emphasizing adverse effects of environmental agents, using
laboratory and field techniques. Two laboratory hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 432. Occupational Safety and Ergonomics. 3 Credits.
Fundamentals of occupational safety and ergonomics with emphasis on
legislation and organization of industrial safety and ergonomic programs,
including hazard recognition, analysis, control, and motivational factors
pertaining to industrial accident and cumulative trauma disorder
prevention.

Rules & Requirements
Grading Status: Letter grade.

ENVR 433. Health Hazards of Industrial Operation. 3 Credits.
An introduction to occupational hygiene and the health hazards
associated with industrial operations. Fundamental scientific principles
are used to provide the foundation for assessing and controlling the
exposures found in the work environment. Topics with broad application
include: noise, heat stress, and ventilation. Specific industrial operations
examined include: welding, electroplating, and spray painting, among
others. The concept of Total Worker Health is explored with a focus on
the role of labor unions. No prerequisites.

Rules & Requirements
Grading Status: Letter grade.

ENVR 451. Introduction to Environmental Modeling. 3 Credits.
Focuses on how to model environmental transport and chemistry of
pollutants. Covers mole balances, rate laws, chemical kinetics, and
reactor design. Principles are applied to any environmental system where
chemical transformations must be described. Three lecture hours per
week.

Rules & Requirements
Grading Status: Letter grade.
ENVR 452. Fluid Dynamics. 3 Credits.
The physical properties of fluids, kinematics, governing equations, viscous incompressible flow, vorticity dynamics, boundary layers, irrotational incompressible flow. Course previously offered as GEOL 560/ MASC 560.

Rules & Requirements
Requisites: Prerequisite, PHYS 401; permission of the instructor for students lacking the prerequisite.
Grading Status: Letter grade.
Same as: EMES 560, PHYS 660.

ENVR 453. Groundwater Hydrology. 3 Credits.
Required preparation, math through differential equations and some familiarity with fluid mechanics. Conservation principles for mass, momentum, and energy developed and applied to groundwater systems. Scope includes the movement of water, gas, and organic liquid phases, the transport and reaction of contaminants. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 468. Temporal GIS and Space/Time Geostatistics for the Environment and Public Health. 3 Credits.
Reviews geographical information systems (GIS). Covers geostatistics theory for the interpolation of environmental and health monitoring data across space and time. Uses publicly available water and air quality monitoring data to create maps used for environmental assessment, regulatory compliance analysis, exposure science, and risk analysis.

Rules & Requirements
Requisites: Prerequisite, MATH 232; permission of the instructor for students lacking the prerequisite.
Grading Status: Letter grade.
Same as: ENEC 468.

ENVR 470. Environmental Risk Assessment. 3 Credits.
Required preparation, one course in probability and statistics. Use of mathematical models and computer simulation tools to estimate the human health impacts of exposure to environmental pollutants. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.
Same as: ENEC 470.

ENVR 472. Quantitative Risk Assessment in Environmental Health Microbiology. 3 Credits.
Recommended preparation, microbiology, epidemiology, and infectious diseases. Survey of alternative approaches, frameworks, and decision-making tools for quantitative risk assessment of microbial pathogens that infect humans and cause disease by the exposure routes of water, food, air, and other vehicles.

Rules & Requirements
Grading Status: Letter grade.

ENVR 500. Environmental Processes, Exposure, and Risk Assessment. 3 Credits.
Environmental chemical and biological transport and transformation, exposure to environmental contaminants, and environmental risk assessment.

Rules & Requirements
Requisites: Prerequisite, CHEM 261.
Grading Status: Letter grade.

ENVR 505. Chemical Oceanography. 4 Credits.
Graduate students only; undergraduates must have permission of the instructor. Overview of chemical processes in the ocean. Topics include physical chemistry of seawater, major element cycles, hydrothermal vents, geochemical tracers, air-sea gas exchange, particle transport, sedimentary processes, and marine organic geochemistry. Three lecture and two recitation hours per week. Course previously offered as GEOL 505/MASC 505.

Rules & Requirements
Making Connections Gen Ed: PL.
Grading Status: Letter grade.
Same as: EMES 505.

ENVR 514. Measurement of NOx, O3, and Volatile Organic Compounds. 3 Credits.
This course is intended to develop a student's ability to operate the primary instruments for measuring these important pollutants, collect and process samples where necessary, record data, and process instrument data into final air concentration data.

Rules & Requirements
Grading Status: Letter grade.

ENVR 520. Biological Oceanography. 4 Credits.
For graduate students; undergraduates need permission of the instructor. Marine ecosystem processes pertaining to the structure, function, and ecological interactions of biological communities; management of biological resources; taxonomy and natural history of pelagic and benthic marine organisms. Three lecture and recitation hours per week. One mandatory weekend fieldtrip. Course previously offered as MASC 504.

Rules & Requirements
Making Connections Gen Ed: PL.
Grading Status: Letter grade.
Same as: EMES 507, BIOL 657.

ENVR 522. Environmental Change and Human Health. 3 Credits.
The course will provide students with a multidisciplinary perspective of environmental changes to encompass both human health and ecological health.

Rules & Requirements
Requisites: Prerequisite, ENEC 201 or 202.
Grading Status: Letter grade.
Same as: ENEC 522.

ENVR 525. Water, Sanitation, Hygiene, and Global Health. 3 Credits.
Builds on an understanding of infectious and toxic hazards, disease causation, and environmental transmission. Deals with hazard and disease classification; safety, risk, and vulnerability; interventions and their health impact; approaches in different settings; distal factors (e.g., water scarcity, climate change); and approaches to studying unsafe water, sanitation, and hygiene. Previously offered as ENVR 682.

Rules & Requirements
Grading Status: Letter grade.
ENVR 548. Sustainable Energy Systems. 3 Credits.
This course will provide an introduction to urgent topics related to energy, sustainability, and the environment. The course material will focus on new technologies, policies, and plans in cities and different governing bodies in the energy system with a focus on developing tools to analyze energy for its sustainability, impact on people, the environment, and the economy.

Rules & Requirements
Grading Status: Letter grade.
Same as: PLAN 548, ENEC 548.

ENVR 570. Uncertainty, Decisions, and the Environment. 3 Credits.
Required preparation, one course in probability and statistics. Use of quantitative tools for balancing conflicting priorities (such as costs versus human health protection) and evaluating uncertainties when making environmental decisions.

Rules & Requirements
Grading Status: Letter grade.

ENVR 575. Global Climate Change: Science, Impacts, Solutions. 3 Credits.
This class addresses the importance of climate change in its entirety. The first half of the course addresses climate science, followed by climate change impacts, energy and mitigation technologies, economics, and international politics. Improving communication and quantitative skills is emphasized through homework, in-class presentations, and a research paper.

Rules & Requirements
Grading Status: Letter grade.

ENVR 580. Policy Design for Environment, Climate, and Health. 3 Credits.
Students will be introduced to the types of policy instruments that can be used to solve environmental health problems. The course provides a framework for understanding the tasks involved, the main institutions responsible, and an in-depth description of the policy instruments used to tackle environmental health problems.

Rules & Requirements
Grading Status: Letter grade.

ENVR 582. Sanitation for Development. 3 Credits.
Over a million children die yearly from diarrhea, in part because 2.0 billion humans do not have access to a basic toilet. This course presents the problems and context of inadequate sanitation in the developing world, and, more importantly, the types of solutions and approaches available to reduce these problems.

Rules & Requirements
Making Connections Gen Ed: PL, GL.
Grading Status: Letter grade.

ENVR 593. Undergraduate Practicum in Environmental Health Sciences. 1-3 Credits.
A practical experience in a setting relevant to environmental health.

Rules & Requirements
Repeat Rules: May be repeated for credit. 6 total credits. 2 total completions.
Grading Status: Letter grade.

ENVR 600. Environmental Health. 3 Credits.
This course examines the relationship between environmental quality, human health and welfare, with particular attention to contamination in human environment; physical, biological, and social factors; trade-offs regarding prevention and remediation measures. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 601. Epidemiology for Environmental Scientists. 3 Credits.
An introduction to relevant epidemiologic concepts that inform environmental science research. Learning objectives include discussing basic epidemiologic concepts and measures of disease occurrence in populations, explaining epidemiological study designs for studying associations between risk factors or exposures in populations, evaluating epidemiologic evidence, and comprehending basic ethical principles.

Rules & Requirements
Grading Status: Letter grade.

ENVR 610. Global Perspectives on Environmental Health Inequalities. 3 Credits.
Students will learn about how social, economic, and political factors impact environmental health outcomes and will be introduced to theories and methods for incorporating social determinants frameworks into environmental health research, as well as the role of environmental justice movements.

Rules & Requirements
Grading Status: Letter grade.

ENVR 630. Systems Biology in Environmental Health. 3 Credits.
Recommended preparation, one year of biology. Environmental systems biology examines how environmental stressors influence the components of a biological system, and how the interactions between these components result in changes in the function and behavior of that system.

Rules & Requirements
Grading Status: Letter grade.

ENVR 635. Energy Modeling for Environment and Public Health. 3 Credits.
Recommended preparation, MATH 231. This course will equip students with an overview of contemporary issues in energy modeling and energy systems analysis, with a focus on environmental and public health impacts of energy systems. Students will gain exposure to a variety of research methodologies, analytical tools, and applications of energy modeling applied to environmental and public health related problems such as climate change, air pollution, and water footprints of energy systems.

Rules & Requirements
Grading Status: Letter grade.

ENVR 640. Environmental Exposure Assessment. 3 Credits.
Permission of the instructor for nonmajors. The course material introduces the general concepts of assessing environmental exposures to chemicals in human populations. This includes the design of ecologic and personal monitoring studies, the techniques and equipment used for sampling and analysis, and interpretation of data.

Rules & Requirements
Grading Status: Letter grade.
ENVR 650. **Principles of Chemical Carcinogenesis. 2 Credits.**
Required preparation, organic chemistry. Bioactivation of carcinogens, interaction of activated metabolites with DNA, and their effects on DNA structure, replication, repair, and the control of these processes during development of chemically induced carcinogenesis. Two lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 661. **Scientific Computation I. 3 Credits.**
Requires some programming experience and basic numerical analysis. Error in computation, solutions of nonlinear equations, interpolation, approximation of functions, Fourier methods, numerical integration and differentiation, introduction to numerical solution of ODEs, Gaussian elimination.

Rules & Requirements
Grading Status: Letter grade.
Same as: MATH 661.

ENVR 662. **Scientific Computation II. 3 Credits.**
Theory and practical issues arising in linear algebra problems derived from physical applications, e.g., discretization of ODEs and PDEs. Linear systems, linear least squares, eigenvalue problems, singular value decomposition.

Rules & Requirements
Requisites: Prerequisite, MATH 661.
Grading Status: Letter grade.
Same as: MATH 662, COMP 662.

ENVR 666. **Numerical Methods. 3 Credits.**

Rules & Requirements
Requisites: Prerequisites, COMP 116 and MATH 383.
Grading Status: Letter grade.

ENVR 668. **Methods of Applied Mathematics I. 3 Credits.**
Requires an undergraduate course in differential equations. Contour integration, asymptotic expansions, steepest descent/stationary phase methods, special functions arising in physical applications, elliptic and theta functions, elementary bifurcation theory.

Rules & Requirements
Grading Status: Letter grade.
Same as: MATH 668.

ENVR 669. **Methods of Applied Mathematics II. 3 Credits.**
Perturbation methods for ODEs and PDEs, WKBJ method, averaging and modulation theory for linear and nonlinear wave equations, long-time asymptotics of Fourier integral representations of PDEs, Green’s functions, dynamical systems tools.

Rules & Requirements
Requisites: Prerequisite, MATH 668.
Grading Status: Letter grade.
Same as: MATH 669.

ENVR 671. **Environmental Physics I. 3 Credits.**
A first graduate-level course in physical principles relevant to environmental systems. Topics include dimensional analysis, tensor calculus, conservation of mass and momentum. Applications are considered from natural and engineered systems and across all relevant media. Focus is on the development of mechanistic representation of environmental systems.

Rules & Requirements
Grading Status: Letter grade.

ENVR 672. **Environmental Physics II. 3 Credits.**
Second part of a graduate-level sequence in physical principles relevant to environmental systems. Topics include turbulence, conservation of energy, multiscale methods, and thermodynamics. Applications are considered from natural and engineered systems and across all relevant media. Focus is on development of mechanistic representation of environmental systems.

Rules & Requirements
Requisites: Prerequisite, ENVR 671.
Grading Status: Letter grade.

ENVR 673. **Hydraulics for Environmental Engineering. 3 Credits.**
Permission of the instructor for undergraduates. This course teaches practical basics of how to solve environmental engineering problems in the hydraulics of pipes, pumps, networks, and open channels. The course is a mix of classroom lectures, problem-solving sessions, and laboratory sessions.

Rules & Requirements
Requisites: Prerequisites, MATH 231 and PHYS 114.
Grading Status: Letter grade.

ENVR 675. **Air Pollution, Chemistry, and Physics. 3 Credits.**
This class is designed for graduate students planning for research in air pollution, emphasizing chemical kinetics and engineering approaches to problem solving in addition to atmospheric structure, meteorology, and modeling. We address problems of stratospheric and tropospheric ozone, particulate matter, and acid rain. We emphasize quantitative problem solving in homework.

Rules & Requirements
Grading Status: Letter grade.

ENVR 683. **Water-Health Research I. 2 Credits.**
Permission of the instructor for undergraduates and nonmajors. Introduces students to methods for research conception, design, planning, and implementation in fields related to water and its impacts on health. Students study approaches and tools that may be applied in water-related research and are coached in developing their own research design.

Rules & Requirements
Grading Status: Letter grade.

ENVR 684. **Water-Health Research II. 2 Credits.**
Permission of the instructor for undergraduates and nonmajors. Familiarizes students with the principles of scientific communication with an emphasis on scientific writing and oral presentations. Using their own water and health research, students learn how to communicate effectively in informal settings and how to prepare for interviews with the media.

Rules & Requirements
Grading Status: Letter grade.
ENVR 685. Water and Sanitation Planning and Policy in Less Developed Countries. 3 Credits.
Permission of the instructor. Seminar on policy and planning approaches for providing improved community water and sanitation services in developed countries. Topics include the choice of appropriate technology and level of service, pricing, metering, and connection charges; cost recovery and targeting subsidies to the poor; water venting; community participation in the management and operation of water systems; and rent-seeking behavior in the provision of water supplies.

Rules & Requirements
Grading Status: Letter grade.
Same as: PLAN 685.

ENVR 687. Writing for Journal Publication on Water and Sanitation Hygiene, Health, and Development. 2 Credits.
This course familiarizes students with scientific paper writing and coaches students towards journal manuscript submission. Students should have a data set of results. Sessions begin with student presentations and discussion, followed by a brief preparatory lecture on the next assignment. Substantive preparation is required between sessions.

Rules & Requirements
Grading Status: Letter grade.

ENVR 691H. Honors Research. 3 Credits.
Permission of the instructor. Directed readings or laboratory study of a selected topic. A written report is required in the form of an honors thesis (ENVR 692H).

Rules & Requirements
Grading Status: Letter grade.

ENVR 692H. Honors Thesis. 3 Credits.
Students complete honors research projects.

Rules & Requirements
IDEAs in Action Gen Ed: RESEARCH.
Repeat Rules: May be repeated for credit. 6 total credits. 2 total completions.
Grading Status: Letter grade.

ENVR 701. Ecology of Aquatic Plants and Wetland Ecosystems. 3 Credits.
Adaptations of aquatic plants and microorganisms of land-water interface regions of lakes and rivers, their nutrition, growth, population dynamics, competition, herbivory, productivity, physiological control measures. Wetlands functions, values to humans. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 703. Proposal Writing for Environmental Research. 3 Credits.
This course is intended for PhD students to become familiar with the methods for writing a research proposal, grant application or response to a request for proposal/application (RFP/RFA). The course will provide orientation in conception, planning and implementation of writing a grant.

Rules & Requirements
Repeat Rules: May be repeated for credit. 2 total credits. 2 total completions.
Grading Status: Letter grade.

ENVR 704. Critical Analysis of Environmental Research. 1 Credits.
This 1 credit course is intended for PhD students. Students will learn how to conduct formal peer reviews for environmental health, science and engineering journals. In so doing, they will develop skills needed to critically evaluate environmental research.

Rules & Requirements
Repeat Rules: May be repeated for credit. 2 total credits. 2 total completions.
Grading Status: Letter grade.

ENVR 705. One Health: Philosophy to Practical Integration. 1-3 Credits.
This course explores the intersection of human, animal, and environmental health and facilitates the understanding of health as an inexorably linked system requiring multidisciplinary collaborative efforts. The One Health concept demonstrates the importance of a holistic approach to disease prevention and the maintenance of human, animal, and environmental health.

Rules & Requirements
Grading Status: Letter grade.
Same as: PUBH 705.
ENVR 707. Advanced Toxicology. 3 Credits.
Cellular and physiological basis of toxicity of environmental chemicals, with emphasis on inhalation toxicity, developmental toxicity, immunotoxicology, radiation toxicology, renal toxicity, and neurotoxicology. Three lecture hours per week.

Rules & Requirements
Requisites: Prerequisite, PHCO 702; permission of the instructor for students lacking the prerequisite.
Grading Status: Letter grade.
Same as: TOXC 707, PHCO 707.

ENVR 710. Environmental Process Biotechnology. 3 Credits.
Required preparation, a previous or concurrent course in microbiology. Theory and practice of biological processes used to remove contaminants from environmental media, including water, wastewater, soil, and air.

Rules & Requirements
Grading Status: Letter grade.

ENVR 722. Toxicology Seminar III. 1 Credits.
Presentations by outside invited speakers, local faculty, advanced graduate students, and postdoctoral trainees. Topics will cover all areas of research in toxicology. One hour per week.

Rules & Requirements
Grading Status: Letter grade.
Same as: TOXC 722.

ENVR 724. Current Topics in Environmental Analytical Chemistry. 1 Credits.
Students will select, critically review, and discuss current research papers for content, relevance, innovation, and clarity. Papers can be from any aspect of the environmental sciences. Two lecture hours per week, every other week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 725. Environmental Physical-Organic Chemistry. 3 Credits.
The physical chemistry of the partitioning, exchange, and chemical transformation of organic contaminants in the water, air, and soil environments.

Rules & Requirements
Grading Status: Letter grade.

ENVR 726. Instrumental Methods for the Chemical Analysis of Environmental Samples. 3 Credits.
Required preparation, basic or general chemistry. Emphasis on acquiring laboratory skills and hands-on experience with instrumentation, including chromatography and mass spectrometry, sample handling and preparation, quality assurance and control. Three lecture hours or one lecture hour and four laboratory hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 730. Computational Toxicology and Exposure Science. 3 Credits.
This course provides an introduction to the field of computational toxicology and exposure science. Students will be equipped to understand databases and tools that can more efficiently evaluate chemical-biological and chemical-disease relationships. Students will be expected to use excel and R/Rstudio, and run script that is provided by the instructor as a gentle 'welcome' to the coding environment. The course is designed for students in public health, toxicology, exposure science, epidemiology, and related disciplines.

Rules & Requirements
Requisites: Prerequisites, Basic knowledge of environmental science, chemistry, and biology is required, familiarity with excel and basic data software, and students are required to be willing to run R/Rstudio and other example coding packages, with script largely already provided for.
Grading Status: Letter grade.

ENVR 732. Health Effects of Outdoor and Indoor Air Pollution. 3 Credits.
Required preparation, knowledge of basic human physiology and biochemistry helpful. Assessing health effects of air pollutants on normal and diseased human populations, including children. Physiology, cellular and molecular biology, immunology, genetics, dosimetry will be integrated. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 742. Theory and Practice of Evaluating Human Health Risks of Chemicals. 2 Credits.
ENVR/TOXC 707 and ENVR 470 are highly recommended. This course will provide students who already have good knowledge of the basic principles of toxicology and environmental health with real-life examples of how the information is integrated for the purpose of judging what chemical exposures may pose risk to human health.

Rules & Requirements
Requisites: Prerequisites, ENVR/TOXC/BIOC 442 or ENVR 430.
Grading Status: Letter grade.

ENVR 749. Biochemical Toxicology. 3 Credits.
Required preparation, one course in biochemistry. Biochemical actions of toxics and assessment of cellular damage by biochemical measurements. Three lecture hours per week.

Rules & Requirements
Requisites: Prerequisite, CHEM 430; permission of the instructor for students lacking the prerequisites.
Grading Status: Letter grade.
Same as: BIOC 749, TOXC 749.

ENVR 753. Programming for Environmental Applications. 1 Credits.
A one-credit course designed to give new graduate students the tools to apply the Python programming language to their own research and work. The course covers introductory material including the variable types and data structures and progresses to more advanced capabilities, such as regression analysis and optimization. The course is heavily focused on bi-/weekly assignments meant to reinforce the lectures and highlights basic applications in environmental science. Companion course to ENVR 755.

Rules & Requirements
Requisites: Corequisite, ENVR 755.
Grading Status: Letter grade.
ENVR 754. Air Pollution Control. 3 Credits.
Engineering control of air pollution control systems and discussion of air pollution regulation and standards. Spring. (Odd-numbered years.)

Rules & Requirements
Grading Status: Letter grade.

ENVR 755. Analysis of Water Resource Systems. 3 Credits.
Permission of the instructor for nonmajors. Use of mathematical models to design and evaluate regional water supply and treatment systems. Engineering and economic methods are incorporated into quantitative analyses of regional scenarios. Social and political aspects also discussed. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 756. Physical/Chemical Treatment Processes. 3 Credits.
Principles of disinfection, oxidation, coagulation, precipitation, sedimentation, filtration, adsorption, ion exchange, and membrane processes; applications to water and wastewater treatment. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 757. Water and Wastewater Treatment Plant Design. 3 Credits.
The application of the theory of water and wastewater treatment to the design of municipal facilities. The course includes the principles of design and modern design practices. Design and analysis of design of specific works for water and wastewater treatment.

Rules & Requirements
Requisites: Prerequisites, ENVR 710 and 756.
Grading Status: Letter grade.

ENVR 758. Environmental Engineering Project. 3 Credits.
Ad hoc project designed for a student team in addressing a current problem in environmental engineering. Projects may include laboratory or pilot-scale studies, collection and analysis of data from full-scale systems, or comprehensive analysis of relevant problems in environmental engineering practice. Three lecture hours per week.

Rules & Requirements
Requisites: Prerequisite, ENVR 453.
Grading Status: Letter grade.

ENVR 760. Uncertainty Quantification for Environmental Systems. 3 Credits.
Quantitative assessment of how uncertainty in mechanistic models (subsurface, ocean, atmosphere, global climate), parameters, and auxiliary conditions of a model is manifest in uncertainty in model predictions. Topics include: model formulations, statistical tools, Monte Carlo methods, moment methods, estimation methods, statistical simulation methods, reduced order models, and data assimilation approaches.

Rules & Requirements
Grading Status: Letter grade.

ENVR 761. Numerical ODE/PDE, I. 3 Credits.
Single, multistep methods for ODEs: stability regions, the root condition; stiff systems, backward difference formulas; two-point BVPs; stability theory; finite difference methods for linear advection-diffusion equations.

Rules & Requirements
Requisites: Prerequisites, MATH 661 and 662.
Grading Status: Letter grade.
Same as: MATH 761, MASC 781.

ENVR 762. Numerical ODE/PDE, II. 3 Credits.
Elliptic equation methods (finite differences, elements, integral equations); hyperbolic conservation law methods (Lax-Friedrich, characteristics, entropy condition, shock tracking/capturing); spectral, pseudo-spectral methods; particle methods, fast summation, fast multipole/vortex methods.

Rules & Requirements
Requisites: Prerequisite, MATH 761.
Grading Status: Letter grade.
Same as: MATH 762, MASC 782.

ENVR 763. Mathematical Modeling I. 3 Credits.
Nondimensionalization and identification of leading order physical effects with respect to relevant scales and phenomena; derivation of classical models of fluid mechanics (lubrication, slender filament, thin films, Stokes flow); derivation of weakly nonlinear envelope equations. Fall.

Rules & Requirements
Requisites: Prerequisites, MATH 661, 662, 668, and 669.
Grading Status: Letter grade.
Same as: MATH 768, MASC 783.

ENVR 764. Mathematical Modeling II. 3 Credits.
Current models in science and technology; topics ranging from material science applications (e.g., flow of polymers and LCPs); geophysical applications (e.g., ocean circulation, quasi-geostrophic models, atmospheric vortices).

Rules & Requirements
Requisites: Prerequisites, MATH 661, 662, 668, and 669.
Grading Status: Letter grade.
Same as: MATH 769, MASC 784.
ENVR 765. Space Time Exposure Mapping and Risk Assessment. 3 Credits.
Theory and MATLAB numerical implementation of linear geostatistics (simple/ordinary/universal kriging) and modern geostatistics (Bayesian Maximum Entropy) to map environmental and health processes varying across space and time. Applications in exposure assessment, environmental epidemiology, medical geography, and risk assessment.

Rules & Requirements
Grading Status: Letter grade.

ENVR 766. Stochastic Environmental Health Modeling. 3 Credits.

Rules & Requirements
Grading Status: Letter grade.

ENVR 767. Modeling for Environmental Risk Analysis. 3 Credits.
Mathematical methods for development of advanced models in environmental risk assessment, including exposure assessment and exposure-response assessment, are developed and applied. Three lecture hours per week.

Rules & Requirements
Requisites: Prerequisite, ENVR 470.
Grading Status: Letter grade.

ENVR 768. Microenvironmental Air Flow Modeling. 3 Credits.
Required preparation, fluid mechanics. Permission of the instructor. Applications of finite element and vortex methods for modeling air flows of significance in industrial hygiene applications. Three lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.

ENVR 769. Quantitative Methods for Exposure Science. 3 Credits.
SAS regression and statistics, two ENVR courses (e.g. 430, 470, 707, 740, 770, 890), or permission of the instructor. Mathematical approaches for assessing environmental and/or occupational exposures to chemicals in human populations using stochastic (group) statistics, regression analysis and modeling, and pharmacokinetic modeling; focus on human biomarker data.

Rules & Requirements
Requisites: Prerequisite, BIOS 511.
Grading Status: Letter grade.

ENVR 770. Biological Monitoring. 3 Credits.
This course provides both practical and theoretical information on biological monitoring of chemical exposures and how to evaluate and interpret exposure data. Three lecture hours per week and a term paper (three credit hours).

Rules & Requirements
Requisites: Prerequisite, ENVR 430.
Grading Status: Letter grade.

ENVR 771. Exposure Analysis. 3 Credits.
This course is intended for students interested in research involving exposure to environmental contaminants. The course focuses on the integration of engineering principles, with statistical tools to enhance inference. Statistical models based on the Johnson system of distributions are explored for the analysis data including exposure-biomarker relationships.

Rules & Requirements
Grading Status: Letter grade.

ENVR 773. Modeling Atmospheric Chemistry. 3 Credits.
Air pollution is formed through thousands of chemical reactions. Computer models are used to simulate this complex chemistry and used to make policy. Current computational restraints force a simplified representation of atmospheric chemistry in these models, and the focus of this course is the implications of this on predictions.

Rules & Requirements
Grading Status: Letter grade.

ENVR 775. Global Climate Change: Interdisciplinary Perspectives. 1 Credit.
This class addresses the complexity and importance of global climate change from several disciplines. A top expert will lecture each week, addressing these themes: the science of human influences on climate; impacts and adaptation; global energy and technology; communication; and economics and international solutions.

Rules & Requirements
Grading Status: Letter grade.

ENVR 777. Air Quality and Atmospheric Sciences Seminar. 1 Credit.
This course gives students practice organizing a scientific presentation and speaking in front of an audience and promoting interdisciplinary interaction. Students will research topics and organize presentations for faculty and other students. The topics may be any aspect of air quality and atmospheric sciences.

Rules & Requirements
Repeat Rules: May be repeated for credit. 3 total credits. 3 total completions.
Grading Status: Letter grade.

ENVR 779. Project Management and Implementation. 3 Credits.
This course presents program/project management and implementation concepts, tools and methods applicable to global public health projects. Students will learn and practice the skills necessary to successfully plan, implement and evaluate a project including how to organize and lead successful project teams in complex environments. This course is designed to give students the skills to successfully develop, engage and support global public health projects.

Rules & Requirements
Grading Status: Letter grade.

ENVR 780. Urban Water Services Planning and Design. 3 Credits.
This course helps students learn and apply principles of water supply sewerage and drainage planning and design, work collaboratively on real-world problems with insufficient data, and present technical findings in a clear and convincing way.

Rules & Requirements
Requisites: Prerequisite, ENVR 673; permission of the instructor for students lacking the prerequisite.
Grading Status: Letter grade.
ENVR 781. Water Resources Planning and Policy Analysis. 3 Credits.
Water resources planning and management. Federal and state water resources policies. Analytical skills to identify environmental problems associated with urban water resources development.

Rules & Requirements
Grading Status: Letter grade.
Same as: PLAN 781.

ENVR 782. Occupational Health Nursing II: Occupational Health Programming. 3 Credits.
Continuation of ENVR 791. Role components of occupational health nursing with emphasis on designing, implementing, and evaluating occupational health programs. Emphasis on analysis of factors influencing the delivery of health care at the worksite.

Rules & Requirements
Requisites: Prerequisite, ENVR 791; Permission of the instructor for students lacking the prerequisite.
Grading Status: Letter grade.

ENVR 783. Setting Environmental Priorities. 3 Credits.
This course is intended to develop a student’s ability to estimate the relative merits of research and policy actions in several broad environmental areas, with attention to the associated uncertainty. Criteria to be included are both quantitative and qualitative, with an emphasis on public health, environmental, and economic metrics.

Rules & Requirements
Grading Status: Letter grade.

ENVR 784. Community-Driven Research and Environmental Justice. 2 Credits.
In this course, students will learn from community residents who challenge public health scientists to conduct research on environmental and occupational hazards that impact their health.

Rules & Requirements
Grading Status: Letter grade.

ENVR 785. Public Investment Theory. 3 Credits.
Basic theory, process, and techniques of public investment planning and decision making, involving synthesis of economic, political, and technologic aspects. Theory underlying benefit-cost analysis, adaptation to a descriptive and normative model for planning public projects and programs.

Rules & Requirements
Requisites: Prerequisite, PLAN 710.
Grading Status: Letter grade.
Same as: PLAN 785.

ENVR 786. Environmental Quality Management. 3 Credits.
Planning and analysis of regional environmental system with a focus on management of mass flows that affect the quality of the regional environment.

Rules & Requirements
Grading Status: Letter grade.
Same as: PLAN 786.

ENVR 787. Applied Environmental Finance: How to Pay for Environmental Services. 3 Credits.
How can governments, communities, organizations, and businesses fund environmental services? This applied course reviews the diverse tools and strategies that environmental service providers use to pay for programs. The course will focus on environmental services related to: drinking water, wastewater, storm-water, watershed protection, energy efficiency, renewable energy, sustainability, and wetlands.

Rules & Requirements
Grading Status: Letter grade.
Same as: PUBA 787, PLAN 787.

ENVR 788. Managing Environmental Financial Risk. 3 Credits.
As society’s exposure to environmental risks grows, it has become increasingly important to find innovative tools for mitigating these risks. This course is designed to introduce students to the fundamentals of financial risk management within an environmental context, with an emphasis on developing coupled environmental-financial systems models.

Rules & Requirements
Grading Status: Letter grade.

ENVR 789. International Field Research. 2 Credits.
Course offers theoretical foundations in cultural sensitivity, personal security, communication, organization and research along with guided practical exercises in conducting international field research. The result is the development of cross-cultural and applied research skills that prepare the student to conduct successful field research.

Rules & Requirements
Grading Status: Letter grade.

ENVR 791. Occupational Health Nursing I: Occupational Health Assessment. 3 Credits.
Occupational Health Nursing I: Occupational Health Assessment.

Rules & Requirements
Grading Status: Letter grade.

ENVR 793. Writing Scientific Papers for WaSH Peer-Reviewed Journal Publication. 2 Credits.
A two-credit, fall course open to graduate students with a complete data set with results to communicate to other scientists as a scientific paper or manuscript submission to peer-reviewed journals on an aspect of water and health. Undergraduate honors students admissible at discretion of the instructor.

Rules & Requirements
Grading Status: Letter grade.

ENVR 795. Critical issues in work, worker and workplace health. 3 Credits.
This course prepares students to contribute as members of an interdisciplinary team to protect and promote workers’ health. Students will learn that work is a social determinant of health and explore the context in which worker health protection/promotion practitioners work. Students will be able to summarize key regulations and policies that impact work and worker health.

Rules & Requirements
Grading Status: Letter grade.
Same as: HBEH 785.
ENVR 797. Fundamentals of Industrial Hygiene. 3 Credits.
Provides broad understanding of industrial hygiene. Major emphasis is recognition of hazards in the workplace, evaluation of measurement of those hazards, and application of control strategies. The course will focus on introductory level industrial hygiene concepts associated with the anticipation, recognition, evaluation, control, and confirmation of control of occupational health hazards.

Rules & Requirements
Grading Status: Letter grade.

ENVR 850. Systems Analysis in Environmental Planning. 3 Credits.
Required preparation, calculus. Applications of systems analysis techniques to the management of environmental quality.

Rules & Requirements
Grading Status: Letter grade.

ENVR 890. Problems in Environmental Sciences and Engineering. 1-21 Credits.
For students who wish to undertake individual or special topics study of a specific problem in environmental sciences and engineering. The subject and requirements of the project are arranged with the faculty in each individual instance. One or more hours per week. Permission of the department.

Rules & Requirements
Repeat Rules: May be repeated for credit; may be repeated in the same term for different topics.
Grading Status: Letter grade.

ENVR 981. Environmental Sciences Practicum. 1-9 Credits.
A practical experience in public health/environmental health sciences.

Rules & Requirements
Grading Status: Letter grade.

ENVR 989. Environmental Crisis Management. 3 Credits.
This course will focus on practical solutions to public health related disasters where students extend, critique, and apply knowledge gained in the classroom. This experience-based course will have flexibility to allow for substantive contributions from students of all backgrounds enrolled in the Gillings School of Global Public Health.

Rules & Requirements
Repeat Rules: May be repeated for credit.
Grading Status: Letter grade.

ENVR 997. Environmental Engineering Brief. 1.5-3 Credits.
Students in ENVR 990 will work in concert with their advisor to identify and define an engineering problem, describe a solution to the problem, and develop a plan for implementation. These briefs serve as a foundation for the student’s master’s technical report.

Rules & Requirements
Repeat Rules: May be repeated for credit. 15 total credits. 5 total completions.
Grading Status: Letter grade.

ENVR 991. Research in Environmental Sciences and Engineering. 1-9 Credits.
Consultation with the faculty and approval of subject and proposed program required. Permission of the instructor. May be repeated. Hours and credits to be arranged.

Rules & Requirements
Repeat Rules: May be repeated for credit.
Grading Status: Letter grade.

ENVR 992. Master’s Technical Report. 3 Credits.
The technical report requirement for M.S.P.H., M.P.H., and M.S.E.E. candidates is satisfied by the extensive study of a problem in environmental sciences and engineering.

Rules & Requirements
Repeat Rules: May be repeated for credit.

ENVR 993. Master’s Research and Thesis. 3 Credits.

Rules & Requirements
Repeat Rules: May be repeated for credit.

ENVR 994. Doctoral Research and Dissertation. 3 Credits.

Rules & Requirements
Repeat Rules: May be repeated for credit.

Following the faculty member’s name is a section number that students should use when registering for independent studies, reading, research, and thesis and dissertation courses with that particular professor.

Professors

John M. Bane Jr., Marine Sciences, Physical Oceanography
Joe Brown (137), Water and Sanitation, Environmental Health Microbiology; Director, Engineering Programs
Gregory W. Characklis (98), Water Resources Engineering, Economics and Management; Director, Center on Financial Risk in Environmental Systems
Orlando Coronell (10), Physical and Chemical Processes for Water Treatment, Membrane Technology, Granular Sorbents; Associate Chair for Academics
Rebecca C. Fry (7), Toxicogenomics, Epigenetics, Genetics, Toxicology; Director, Institute for Environmental Health Solutions; Director, Institute for Environmental Health Solutions; Department Chair (Interim)
Avram Gold (43), Environmental Chemistry
Ilona Jaspers (99), Health Effects of Air Pollution in the Lung; Director, Center for Environmental Medicine, Asthma, and Lung Biology
Richard A. Luetich Jr. (68), Marine Sciences, Coastal Physics, Hurricane Storm Surge Modeling; Director, Institute of Marine Science
Christopher S. Martens (92), Marine Sciences, Biogeochemistry
Cass T. Miller (59), Porous Medium Systems, Environmental Physics, Environmental Modeling
Rachel T. Noble (110), Marine Microbial Ecology, Water Quality Microbiology, Non-Point Source (e.g., Storm water), Contamination of Receiving Waters
Leena A. Nylander-French (95), Skin and Inhalation Exposures to Toxicants, Exposure Modeling; Director, Occupational Safety and Health Education and Research Center
Hans W. Paerl (65), Aquatic Microbial Ecology, Marine and Freshwater Nutrient Cycling
Michael C. Piehler (33), Marine Environmental Sciences, Environmental Microbial Ecology
Aaron Salzberg (133), Water Supply Planning and Sanitation; Director, Water Institute
Jill R. Stewart (26), Water Quality Microbiology, Ecological Assessment and Prediction
Jason Surratt (30), Atmospheric Chemistry, Secondary Organic Aerosols, Heterogeneous Chemistry, Air Pollution
Barbara J. Turpin (32), Atmospheric Chemistry, Air Pollution and Human Exposure
William Vizuete (6), Atmospheric Modeling, Air Pollution, Environmental Engineering, Atmospheric Chemistry
Paul B. Watkins, Director, General Clinical Research Center, UNC Hospitals
J. Jason West (16), Air Pollution, Climate Change, Atmospheric Modeling, Global Health, Environmental Policy, Environmental Engineering
Dale Whittington (70), Water Resources Economics, International Development

Associate Professors

Kun Lu (37), Microbiome, Exposome, Omics Profiling (Metabolomics, Proteomics, Lipidomics), DNA Adducts, Biomarker Development, Cancer, Chronic Inflammation, Children's Health
Marc L. Serre (100), Space/Time Statistics, Exposure Assessment, Environmental Modeling, Hydrology, Geostatistics, GIS, Environmental Epidemiology, Risk Assessment, Medical Geography

Assistant Professors

Noah Kittner (131), Energy Systems Analysis, Sustainability Science, Energy and Environmental Policy, Energy in Underserved communities
Julia Rager (130), Environmental Risk Assessment, Exposure Assessment, Genetics, Toxicology

Research Professors

Glenn Morrison (124), Indoor Air, Surface Chemistry, Human Exposure
Mark D. Sobsey, Environmental Health Microbiology, Virology, Water, Sanitation and Hygiene
Bill Gray, Hydrology, Porous Media Flow, Environmental Thermodynamics

Research Associate Professor

Zhenfa Zhang, Synthetic Organic Chemistry

Research Assistant Professors

Ryan Cronk (11), Global Water, Sanitation and Hygiene (WaSH), Environmental Risk Assessment
Michael Fisher (136), Global Water, Sanitation and Hygiene (WaSH)
Timothy Weigand (108), Fluid Dynamics, AI/Machine Learning, Mechanistic Modelling, Computational Science

Teaching Associate Professors

Amanda Northcross (134), Exposure Assessment, Air Pollution, Global Health; Director, Undergraduate Studies (B.S.P.H. and Assured Enrollment Programs)
John Staley (135), Occupational Health and Safety; NC OSHERC; NIOSH Center for Excellence: the Carolina Center for Healthy Work Design and Worker Well-being

Clinical Associate Professor

Courtney Woods (51), Health Equity, Systems Modeling, Environmental Epidemiology, Risk Assessment, Global Health; Director, E.C.H. M.P.H. Program

Adjunct Professors

Sarah Arunachalam, Air Quality Modeling, Analyses, and Health Risk; Environmental Policy
Linda S. Bimbaum (86), Xenobiotic Metabolism, Biochemical Toxicology
Clarissa Brocklehurst, Water Supply and Sanitation
Daniel L. Costa (97), Pulmonary Toxicology
Pat Curran, Occupational Safety, Industrial Hygiene
Felix Dodds, Sustainable Development, Finance, Climate, Environmental Security
Jonathan Freedman, Toxicology, Chemical Exposure, Risk Assessment
Shabbir H. Gheewala, Life Cycle Assessment
Jackie MacDonald Gibson, Water Quality, Environmental Justice, Risk Assessment
M. Ian Gilmour, Immunotoxicology
David H. Leith (56), Air Pollution Control Engineering, Aerosol Technology
Michael Madden (101), Toxicology
Valeria Ochoa, Biological and Physico-Chemical Wastewater Treatment, Bioremediation, Biotechnology, Sustainability
David Peden, Immunotoxicology, Cardiopulmonary Toxicology, Translational and Clinical Research in Environmental Lung Disease
Joseph Pinto (82), Atmospheric Modeling
Joachim Pleil (106), Exposure Assessment
Havala Pye, Air Quality Modeling
Ana Rappold, Environmental Exposure Assessment, Climate Change, Wildfires and Air Quality
Eva A. Rehfuess, Evidence-Based Public Health Methods, Complex Intervention Evaluations, Child Health in Developing Countries
Jacky Rosati (29), Exposure Assessment
James M. Samet (67), Mechanistic Toxicology, Cardiopulmonary Toxicology, Ambient Air Pollutants
Bill Suk, Hazardous Substances Remediation, Environmental Toxicology, Children's Environmental Health
Miroslav Styblo (79), Nutritional Biochemistry and Biochemical Toxicology
John Tomaro, Research Collaborator for the Water Institute

Adjunct Associate Professors

Jared Bowden, Air Quality and Climate Modeling
Jada Brooks, Health Equity, Community Engaged Research, Environmental Justice
Kristin Isacss, Human Exposure Modeling, Risk Assessment
Janice Lee, Human Health Risk Assessment, Susceptibility, Mode of Action, Systematic Review
Roger Sit, Radiation Physics
Thomas B. Starr, Risk Assessment
John Wambaugh, Computational Toxicology and Exposure

Adjunct Assistant Professors

Karsten Baumann, Aerosol Chemistry
Rich Cravener, Healthy, Safety and Industrial Hygiene; NC OSHERC; NIOSH
Radhika Dhangra (132), Air Pollution, Epidemiology, Epigenetics, Health Effects
Lauren Eaves, Environmental Exposure, Prenatal Health Effects, and Epigenetics
Crystal Lee Pow Jackson, Occupational and Environmental Epidemiology
Hannah Liberatore, Analytical Method Development for Per- and Polyfluoroalkyl Substances (PFAS) sampling and Combustion Ion Chromatography
Liz Naess, Ambient Air Quality Data Analysis, Science and Policy, Health Equity
Antonia Sebastian, Environmental Hazards, Flood Risk Reduction
David Singleton, Environmental Microbiology
Frank J. Stillo, III, Risk Assessment, Risk Communication of Environmental Exposures in Drinking Water
James “Ben” Tidwell, Behavioral Science, Environmental Health in Low- and Middle-Income Countries
W. Jon Wallace, Occupational Safety and Health Education

Professors Emeriti
Richard N.L. Andrews
Jamie Bartram
Russell F. Christman
Douglas Crawford-Brown
Francis A. DiGiano
Michael Flynn
Donald L. Fox
Harvey E. Jeffries
Pete Kolsky
Donald T. Lauria
David H. Moreau
Mark S. Shuman
Stephen C. Whalen
Donald Willhoit

Clinical Professor Emeritus
Donald E. Francisco

Contact Information
Department of Environmental Sciences and Engineering
Visit Program Website (http://www.sph.unc.edu/envr/)

Chair (Interim)
Rebecca Fry

Graduate Program Director
Jason West
jjwest@email.unc.edu

M.P.H. Program Director
Courtney Woods
cgwoods@email.unc.edu

Engineering Programs Director
Joe Brown
joebrown@unc.edu

Associate Chair for Academics
Orlando Coronell
coronell@unc.edu

ESE Student Services
Advising questions and more
ESEStudentServices@unc.edu