The Department of Earth, Marine and Environmental Sciences (EMES) advances understanding of the earth and ocean processes that govern our planet, shape diverse ecosystems, sustain life, and drive environmental change. We promote exploration and discovery of the natural world by engaging students in research-based learning at all levels. Our graduates are equipped with the strong science foundation, critical thinking skills, and interdisciplinary perspectives required to tackle current and future environmental and resource challenges. We encourage engaged service that translates knowledge for the public good. We support a welcoming and inclusive environment, foster diverse identities and perspectives, and encourage collaboration with all segments of society.

Facilities

The primary location of our department in Chapel Hill fosters interactions with faculty, students, and staff from other UNC-Chapel Hill departments, nearby research institutions and companies; places scientists within easy reach of RDU International Airport, allowing for the convenient transport of equipment and personnel to distant ports and field locations; and provides ready access to advanced computational resources through RENCI (Renaissance Computing Institute). The department’s marine laboratory, the Institute of Marine Sciences (https://emes.unc.edu/institute-of-marine-sciences/) in Morehead City, provides coastal access for field studies and instruction. Shared, flexible laboratory space is also now available at the Institute since the addition of a new wing.

The department maintains research facilities and office space in both Murray-Venable Hall and Elisha Mitchell Hall. Specialized analytical equipment and facilities supporting marine science include low background alpha, beta, and gamma detectors, a dedicated GC/MS system, a state-of-the-art isotope ratio monitoring mass spectrometry facility for compound specific carbon analyses, high capacity light- and temperature-controlled incubators, and a full range of specialized chromatographic and spectroscopic gear. Observational instrumentation for field use includes a suite of current meters and temperature/pressure sensors, near-bottom and sub-bottom water samplers and profilers, and a specially built a sensor and data system for aircraft sampling of the coastal ocean and atmosphere.

Geological instrumentation includes two thermal ionization mass spectrometers with associated Class 100 clean labs; quadrupole ICPMS; a sediment analysis laboratory including refrigerated core storage; a laser-size particle analyzer; X-ray fluorescence spectrometer; X-ray diffractometer; scanning electron microscope with X-ray analysis and cathodoluminescence; counting laboratory (alpha-, beta-, and gamma-emitting radionuclides); experimental petrology laboratory. Access to a field-emission electron microprobe is also available through a remotely operated system at Fayetteville State University.

Geological Sciences

The department offers programs leading to the M.S. and Ph.D. degrees in geological sciences. A broad background is offered in most major areas of geoscience, with particular emphasis on global hydrology, flooding and fluvial hydrology, coastal processes and geomorphology, isotope geochemistry and geochronology, seismology, volcanology, igneous and metamorphic petrology, low-temperature geochemistry, paleoclimatology and paleoecology, structural geology and tectonics, surface processes, and tectonic geomorphology.

Admission and General Degree Requirements

Students admitted to pursue a graduate degree in the department are typically expected to have an undergraduate degree in traditional geology, geochemistry, geophysics, biology, chemistry, mathematics, physics, or other related interdisciplinary fields. Please note that the Graduate Record Examination (GRE) is no longer required of applicants. All foreign students whose native language is not English also must take the Test of English as a Foreign Language (TOEFL) examination.

Course requirements for incoming students will be determined by individual graduate committees, often in consultation with the director of graduate studies. Specific requirements are varied to meet the needs and career objectives of the individual.

Financial Aid

The department typically supports 10–12 graduate students in geological sciences with teaching assistantships during the 9-month academic year with stipends of ~$18000. In addition, all graduate students are eligible to apply for departmental summer fellowships ($7,000), research funds, and conference funds from a departmental endowment.

The department also nominates up to three students for consideration by The Graduate School for graduate fellowships; no additional application is necessary. Faculty research grants support some research assistantships. Out-of-state students are recommended for remission of out-of-state tuition costs; all students are recommended for an in-state tuition award. Most students are eligible for both and therefore are responsible only for the payment of student fees. Further information may be found on the department’s website (http://marine.unc.edu/).

Master of Science

Requirements for the master of science degree are 30 semester hours (including a minimum of three hours, but no more than six hours of GEOL 993), a thesis, and a final oral examination in defense of the thesis.

Doctor of Philosophy

Many students have completed a master’s degree before being admitted to the doctoral program, but some students enter the Ph.D. program having completed only an undergraduate degree. Students admitted to the M.S. program who elect to pursue a Ph.D. instead may be permitted to bypass the master’s degree after one semester of residence upon demonstration of superior scholastic performance and research potential. Recommendation by the student’s graduate committee and approval by the geological sciences faculty is required in this case.

Admission to the Ph.D. program after completing the M.S. degree in the Department of Geological Sciences requires faculty approval.

Requirements for the Ph.D. degree are a minimum of 48 semester hours of graduate credit (which may include 30 hours from the M.S. degree) and a minimum of six hours and preferably no more than 12 hours of GEOL 994, a written comprehensive examination and an oral comprehensive examination, a dissertation, and a final oral examination in defense of the dissertation.
Marine Sciences

The department provides teaching and research in estuarine, coastal, and oceanographic sciences leading to M.S. and Ph.D. degrees in marine sciences. Research programs in physical oceanography, marine biology and ecology, marine geochemistry, marine geology, and coastal meteorology are conducted in North Carolina and throughout the world by faculty from the department.

Courses and facilities at other coastal laboratories are also available to UNC-Chapel Hill marine sciences students through cooperative agreements. Courses at North Carolina State University, UNC-Charlotte, UNC-Greensboro, North Carolina Central University, and Duke University may be taken for credit through an interinstitutional registration program.

Admission Requirements

For admission to the department, an undergraduate degree is required in a basic science such as physics, mathematics, chemistry, biology, bacteriology, botany, zoology, geology, or in computer science or engineering. Students are advised to develop a broad undergraduate science major with as many as possible of the following courses: mathematics through calculus, computer science, physics, general and organic chemistry, environmental science, physical chemistry, invertebrate zoology or paleontology, botany, zoology, ecology, physiology, geology, and statistics.

Each graduate student must gain a broad background in the marine sciences as well as an in-depth understanding of his or her own subdiscipline (e.g., chemical oceanography). This is accomplished by taking at least three of the four core courses (listed below) and advanced courses determined by each student’s advisory committee, and by participating in research that ultimately results in an M.S. thesis or a Ph.D. dissertation. By the end of the 24-month period that begins when a student first enrolls in the department, the student is expected to have completed the four core courses, How to Give a Seminar (MASC 705), and Student Interdisciplinary Seminar (MASC 706), and to have taken a written comprehensive exam (M.S. students) in his or her subdiscipline. Further information on degree requirements may be found at the department’s website (http://marine.unc.edu/).

Master of Science

The M.S. degree program is similar to the Ph.D. program except for the following: the advisory committee will be composed of three faculty members, the comprehensive examination is a written exam only, and scientific research will result in a written thesis, to be defended by the student. At least 30 hours of course credit must be earned prior to completing the M.S. degree program. Additional details on the comprehensive examination, admission to candidacy, semesters of residence credit, the thesis, and final oral examination (the thesis defense) are provided in the Marine Sciences Graduate Student Handbook and in The Graduate School Handbook, both available on the department’s website (http://marine.unc.edu/).

Doctor of Philosophy

The academic program for a Ph.D. student will be supervised by a faculty advisory committee of at least five members drawn from the UNC-Chapel Hill graduate faculty. Course requirements normally include at least three of the four core courses, additional advanced courses determined by the student’s advisory committee, one hour of MASC 705 and one hour of MASC 706. A waiver for one or more of the core courses can be arranged with the approval of the student’s advisory committee and the department’s Performance Committee. Additional requirements include passing a comprehensive examination containing both written (research proposal) and oral (proposal defense seminar) parts, a period of study or research at a marine station or participation on an oceanographic cruise, teaching experience sufficient to develop and demonstrate competence, and scientific research resulting in a written dissertation, which is defended by the student. More details on the Ph.D. comprehensive examination, admission to candidacy, semesters of residence credit, the dissertation, and final oral examination (the dissertation defense) are provided in the Marine Sciences Graduate Student Handbook and in The Graduate School Handbook, both available on the department’s website (http://marine.unc.edu/).

Marine Sciences Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMES 503</td>
<td>Marine Geology</td>
<td>4</td>
</tr>
<tr>
<td>EMES 505</td>
<td>Chemical Oceanography</td>
<td>4</td>
</tr>
<tr>
<td>EMES 506</td>
<td>Physical Oceanography</td>
<td>4</td>
</tr>
<tr>
<td>EMES 507</td>
<td>Biological Oceanography</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Professors

Carol Arnosti, Marine Organic Geochemistry, Microbial Biogeochemistry
John M. Bane, Physical Oceanography and Meteorology, Gulf Stream and Upwelling Dynamics
Jaye Cable, Groundwater Dynamics at the Land-Sea Interface, Biogeochemical Cycling, Wetland and Coastal Hydrology
Drew S. Coleman, Isotope Geochemistry, Geochronology
Joel Fodrie, Fisheries Oceanography and Ecology, Restoration Ecology
Eric Kirby, Active Tectonics, Landscape Evolution, Tectonic Geomorphology
Jonathan M. Lees, Seismology, Volcanology
Niels Lindquist, Chemical Ecology, Natural Products
Richard Luettich, Coastal Physical Oceanography, Modeling, Coastal Hazards
Christopher S. Martens, Marine Geochemistry
Brent A. McKee, Geochemistry/Geology of River-Ocean Environments, Sedimentary Geochemistry/Radiochemistry
Laura J. Moore, Coastal Geology
Rachel Noble, Dynamics of Marine Microbial Food Webs
Janet Nye, Quantitative Fisheries Ecology
Hans W. Paerl, Microbial Ecology
Tamlin M. Pavelsky, Global Hydrology
Mike Pienaar, Coastal Ecosystems and Estuarine Ecology
Antonio B. Rodriguez, Sedimentology, Marine and Coastal Geology
Harvey E. Seim, Observational Physical Oceanography, Coastal and Estuarine Dynamics
Donna M. Surge, Paleoclimate, Paleoecology, Low-Temperature Geochemistry
Andreas Teske, Microbial Systematics and Evolution, Microbial Ecology, Microbiology of Hydrothermal Vents and the Marine Subsurface

Associate Professors

Marc J. Alperin, Chemical Oceanography, Biogeochemistry
Karl D. Castillo, Marine Physiological Ecology, Climate Change and Coral Reefs
Scott Gifford, Microbial Ecology and Biogeochemistry
Xiaoming Liu, Geochemistry
Adrian Marchetti, Ecophysiology and Molecular Biology of Marine Phytoplankton
Johanna Rosman, Coastal and Estuarine Fluid Dynamics
Alecia N. Septer, Microbiology
Kevin G. Stewart, Structural Geology
Brian L. White, Fluid Dynamics of Coastal Marine Systems, Hydrodynamics of Aquatic Vegetation, Gravity Currents, Shear Flows and Internal Waves

Assistant Professors
Kennet E. Flores, Petrologic and Tectonic Processes
Wei Mei, Tropical Cyclones and Climate Dynamics
Antonia Sebastian, Applied Hydrology and Water Resources

Research Professor
Michael J. Shore, Geophysics and Seismology

Research Assistant Professors
Nathan Hall
Ryan Mills, Geochemistry
Xiao Yang, Global Hydrology, Remote Sensing, Big Data Analytics

Professors Emeriti

Assistant Teaching Professors
Michelle Haskin, Geoscience Education
Megan F. Plenge, Geoscience Education

GEOL

Advanced Undergraduate and Graduate-level Courses

GEOL 502. Earth Surface Processes. 3 Credits.
This course will focus on the processes of soil formation, erosion, and landform evolution with an emphasis on the interaction of geomorphic processes with surface hydrology and ecosystems. (EES)

Rules & Requirements
Making Connections Gen Ed: PL.
Requisites: Prerequisite, GEOG 110.
Grading Status: Letter grade.
Same as: GEOG 440.

GEOL 503. Marine Geology. 4 Credits.
For graduate students; undergraduates need permission of the instructor. Investigates formation of the oceans, plate tectonics, carbonate reefs and platforms, sediment transport from the land to deep-sea fans, glacial-marine geology, marine records of changes in sea level and climate, and the evolution of barrier islands, estuaries, and deltas. Mandatory weekend field trip to the Southern Outer Banks. Course previously offered as MASC 503.

Rules & Requirements
Making Connections Gen Ed: PL.
Grading Status: Letter grade.
Same as: EMES 503.

GEOL 555. Paleobotany: An Introduction to the Past History of Plants. 3 Credits.
An introduction to the fossil record of plants, investigating how plants originated and changed through geological time to produce the modern flora. Both macrofossils and microfossils will be considered. Three lecture hours a week.

Rules & Requirements
Requisites: Prerequisites, BIOL 103, BIOL 104, and either BIOL 250 or BIOL 271; or permission of the instructor for students lacking the prerequisites; Corequisite, BIOL 555L; permission of the instructor for students lacking the requisites.
Grading Status: Letter grade.
Same as: BIOL 555.

Graduate-level Courses

GEOL 700. Research Seminar. 1 Credits.
Required of all entering graduate students or permission of the department. A topical seminar in current research topics in the earth sciences. Presentations by selected faculty with an emphasis on in-depth, critical analysis of current research literature. Two hours a week.

Rules & Requirements
Grading Status: Letter grade.

GEOL 701. Graduate Seminar. 0.5-21 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 703. Sedimentary Geology I. 3 Credits.
Stratigraphic, sedimentologic, geochemical, petrologic, and paleontologic principles will be summarized. Emphasis is placed on both the techniques used in sedimentary geology and on the characteristics and processes that distinguish sedimentary environments.

Rules & Requirements
Requisites: Prerequisite, GEOL 402.
Grading Status: Letter grade.

GEOL 704. Sedimentary Geology II. 3 Credits.
Continuation of GEOL 703.

Rules & Requirements
Requisites: Prerequisite, GEOL 703.
Grading Status: Letter grade.

GEOL 705. Advanced Petrology I. 3 Credits.
Application of thermodynamics, phase equilibria, thermobarometry, radiogenic and stable isotope geology, and geochemical modeling to the study of igneous and metamorphic rocks and crustal evolution.

Rules & Requirements
Requisites: Prerequisites, CHEM 102, GEOL 304, MATH 233, and PHYS 105.
Grading Status: Letter grade.

GEOL 706. Advanced Petrology II. 3 Credits.
Continuation of GEOL 705.

Rules & Requirements
Requisites: Prerequisite, GEOL 705.
Grading Status: Letter grade.
GEOL 707. Stratigraphic Micropaleontology: Mesozoic Calcareous Nannofossils. 4 Credits.
Rules & Requirements
Grading Status: Letter grade.

GEOL 708. Stratigraphic Paleontology: Cenozoic Calcareous Nannofossils. 4 Credits.
Rules & Requirements
Grading Status: Letter grade.

GEOL 709. Proposal Writing and Scientific Communication. 3 Credits.
This course provides a broad view of cutting-edge research across the geo- and marine sciences and develops proposal-writing and scientific communication skills. Proposals follow the NSF Earth Sciences Postdoctoral Fellowships program guidelines and involve peer review and oral presentations. Students will hone their critical thinking and scientific writing skills. They will learn how to craft project objectives and working hypotheses, explain the significance of the problem, outline broader implications, and effectively design a research plan.

Rules & Requirements
Grading Status: Letter grade.

GEOL 710. Advanced Mineralogy. 3 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 711. Advanced Tectonics. 3 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 712. Isotope Geochemistry. 3 Credits.
Survey of isotopic studies in geology; geochronology, crustal evolution, heat flow, paleotemperatures, origin of ore deposits.

Rules & Requirements
Requisites: Prerequisites, CHEM 102, GEOL 301, 303, and 304.
Grading Status: Letter grade.

GEOL 713. Igneous Petrology. 4 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 714. Metamorphic Petrology. 4 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 715. Tectonophysics. 3 Credits.
Fundamental physical processes necessary for an understanding of plate tectonics; stress and strain in solids; elasticity and flexure; heat transfer; gravity; mantle rheology and convection.

Rules & Requirements
Requisites: Prerequisites, MATH 383, PHYS 201, and 211; Permission of the instructor for students lacking the prerequisites.
Grading Status: Letter grade.

GEOL 804. Advanced Igneous Petrology. 4 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 805. Igneous Geochemistry. 4 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 806. Metamorphic Petrology. 4 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 809. Tectonophysics. 3 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 810. Seminar in Tectonics. 3 Credits.
The goal of this seminar is to examine the Cretaceous to Tertiary tectonics of the western United States to evaluate the putative flat slab processes responsible. Geologic research on the Laramide Orogeny predates plate tectonic theory, and the explosion of subsequent research warrants a reevaluation of existing theory.

Rules & Requirements
Grading Status: Letter grade.

GEOL 854. Seminar in Continental Margins. 0.5-21 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 855. Seminar in Sedimentology. 1-15 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 856. Seminar in Isotope Geology. 3 Credits.
Introduction to the theory, methods and applications of stable isotopes to low- and high-temperature problems. Primary focus will be on the origin, natural abundance, and fractionation of carbon, hydrogen, and oxygen isotopes.

Rules & Requirements
Grading Status: Letter grade.

GEOL 857. Seminar in Geochemistry. 1-15 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 858. Seminar in Petrology. 1-15 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 859. Seminar in Economic Geology. 1-15 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 860. Seminar in Volcanology. 3 Credits.
All aspects of volcanism will be covered including seismology, geochemistry, deep structure, volcanic products and hazards. Readings of original papers will be stressed.

Rules & Requirements
Grading Status: Letter grade.

GEOL 861. Seminar in Geophysics. 0.5-21 Credits.
Develop explanatory and predictive models of the earth’s climate. Introductory level and focused on modeling past climate with the hope of understanding its future. A thorough discussion of current global warming/climate change issues, including the science, history, and controversy, are the main topics of the last third of the course.

Rules & Requirements
Grading Status: Letter grade.

GEOL 862. Seminar in Seismology. 3 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 863. Seminar in Structural Geology. 1-15 Credits.

Rules & Requirements
Grading Status: Letter grade.

GEOL 864. Seminar in Tectonics. 3 Credits.
The goal of this seminar is to examine the Cretaceous to Eocene tectonics of the western United States to evaluate the putative flat slab process responsible. Geologic research on the Laramide Orogeny predates plate tectonic theory, and the explosion of subsequent research warrants a reevaluation of existing theory.

Rules & Requirements
Grading Status: Letter grade.

GEOL 900. Research in Geology. 1-9 Credits.

Rules & Requirements
Grading Status: Letter grade.
GEOL 993. Master’s Research and Thesis. 3 Credits.
Rules & Requirements
Repeat Rules: May be repeated for credit.
GEOL 994. Doctoral Research and Dissertation. 3 Credits.
Rules & Requirements
Repeat Rules: May be repeated for credit.

MASC
Advanced Undergraduate and Graduate-level Courses
MASC 440. Marine Ecology. 3 Credits.
Survey of the ecological processes that structure marine communities in a range of coastal habitats. Course emphasizes experimental approaches to addressing basic and applied problems in marine systems.

Rules & Requirements
Requisites: Prerequisites, BIOL 201; or BIOL 475; or BIOL 103, BIOL 104, and BIOL 260.
Grading Status: Letter grade.
Same as: BIOL 462.

MASC 473. The Changing Coasts of Carolina. 3 Credits.
A rigorous combination of field work, lab work, and colorful, original contemporary writing on the natural world will help tell the story of our many, evolving North Carolina coasts. Combining marine science and the creative literary arts, this immersive course will explore issues of change over many eras. This combination of social, cultural, and scientific observation will lead to imaginatively constructed, well-written non-fiction reportage about one of North America’s most productive, compelling, and challenging regions.

Rules & Requirements
Grading Status: Letter grade.
Same as: ENGL 473.

Graduate-level Courses
MASC 705. How to Give a Seminar. 1 Credits.
Discussion of methods and strategies for giving effective technical presentations. Topics will include seminar structure, use of visual aids, personal and professional presentation, and responding to questions.

Rules & Requirements
Grading Status: Letter grade.

MASC 706. Student Interdisciplinary Seminar. 1 Credits.
Marine Sciences graduate students will prepare and present a seminar on an interdisciplinary topic from contemporary research in marine systems.

Rules & Requirements
Requisites: Prerequisite, MASC 705.
Grading Status: Letter grade.

MASC 741. Seminar in Marine Biology. 2 Credits.
Discussion of selected literature in the field of marine biology, ecology, and evolution.

Rules & Requirements
Grading Status: Letter grade.

MASC 742. Molecular Population Biology. 4 Credits.
Hands-on training, experience, and discussion of the application of molecular genetic tools to questions of ecology, evolution, systematics, and conservation.

Rules & Requirements
Requisites: Prerequisite, BIOL 471; Permission of the instructor for students lacking the prerequisites.
Grading Status: Letter grade.
Same as: BIOL 758.

MASC 750. Modeling Diagenetic Processes. 3 Credits.
An introduction to the theory and application of modeling biogeochemical processes in sediments. Diagenetic theory, numerical techniques, and examples of recently developed sediment models. Three lecture hours a week.

Rules & Requirements
Requisites: Prerequisite, MASC 480; Permission of the instructor for students lacking the prerequisite.

MASC 760. Geophysical Fluid Dynamics. 3 Credits.
Momentum equations in a rotating reference frame, vorticity, potential vorticity, circulation, the shallow water model, Rossby and Kelvin waves, the Ekman layer. Three lecture hours a week.

Rules & Requirements
Requisites: Prerequisite, MASC 560 or MATH 528; permission of the instructor for students lacking the prerequisite.

MASC 762. Ocean Circulation Theory. 3 Credits.
Theories, models of large-scale dynamics of ocean circulation. Potential vorticity, quasi-geostrophy, instabilities.

Rules & Requirements
Requisites: Prerequisite, MASC 560 or 560, or MATH 529; permission of the instructor for students lacking the prerequisite.

MASC 764. Ocean Circulation Modeling. 3 Credits.
Computational methods used in modeling oceanic circulation. Numerical solution of equations governing mass, momentum, and energy equations.

Rules & Requirements
Requisites: Prerequisite, MASC 560 or MATH 529; permission of the instructor for students lacking the prerequisite.

Grading Status: Letter grade.
MASC 765. Small-Scale Physics of the Ocean. 3 Credits.

Rules & Requirements
Requisites: Prerequisites, MASC 506 and 560.
Grading Status: Letter grade.

MASC 781. Numerical ODE/PDE, I. 3 Credits.
Single, multistep methods for ODEs: stability regions, the root condition; stiff systems, backward difference formulas; two-point BVPs; stability theory; finite difference methods for linear advection diffusion equations.

Rules & Requirements
Requisites: Prerequisites, MATH 661 and 662.
Grading Status: Letter grade.
Same as: MATH 761, ENVR 761.

MASC 782. Numerical ODE/PDE, II. 3 Credits.
Elliptic equation methods (finite differences, elements, integral equations); hyperbolic conservation law methods (Lax-Friedrich characteristics, entropy condition, shock tracking/capturing); spectral, pseudo-spectral methods; particle methods, fast summation, fast multipole/vortex methods.

Rules & Requirements
Requisites: Prerequisite, MATH 761.
Grading Status: Letter grade.
Same as: MATH 762, ENVR 762.

MASC 783. Mathematical Modeling I. 3 Credits.
Nondimensionalization and identification of leading order physical effects with respect to relevant scales and phenomena; derivation of classical models of fluid mechanics (lubrication, slender filament, thin films, Stokes flow); derivation of weakly nonlinear envelope equations. Fall.

Rules & Requirements
Requisites: Prerequisites, MATH 661, 662, 668, and 669.
Grading Status: Letter grade.
Same as: MATH 768, ENVR 763.

MASC 784. Mathematical Modeling II. 3 Credits.
Current models in science and technology: topics ranging from material science applications (e.g., flow of polymers and LCPs); geophysical applications (e.g., ocean circulation, quasi-geostrophic models, atmospheric vortices).

Rules & Requirements
Requisites: Prerequisites, MATH 661, 662, 668, and 669.
Grading Status: Letter grade.
Same as: MATH 769, ENVR 764.

MASC 799. Experimental Graduate. 1-9 Credits.
Experimental graduate level courses as offered by the Department.

Rules & Requirements
Repeat Rules: May be repeated for credit; may be repeated in the same term for different topics; 9 total credits. 1 total completions.
Grading Status: Letter grade.

MASC 893. Special Topics in Marine Geology. 1-9 Credits.
Special topics courses in Marine Geology as offered by Department.

Rules & Requirements
Repeat Rules: May be repeated for credit; may be repeated in the same term for different topics; 9 total credits. 1 total completions.
Grading Status: Letter grade.

MASC 894. Special Topics in Biological Oceanography. 1-9 Credits.
Special topics courses in Biological Oceanography as offered by Department.

Rules & Requirements
Repeat Rules: May be repeated for credit; may be repeated in the same term for different topics; 9 total credits. 1 total completions.
Grading Status: Letter grade.

MASC 895. Special Topics in Physical Oceanography. 1-9 Credits.
Special topics courses in Physical Oceanography as offered by Department.

Rules & Requirements
Repeat Rules: May be repeated for credit; may be repeated in the same term for different topics; 9 total credits. 1 total completions.
Grading Status: Letter grade.

MASC 896. Special Topics in Chemical Oceanography. 1-9 Credits.
Special topics courses in Chemical Oceanography as offered by Department.

Rules & Requirements
Repeat Rules: May be repeated for credit; may be repeated in the same term for different topics; 9 total credits. 1 total completions.
Grading Status: Letter grade.

MASC 940. Research in Marine Sciences. 2-21 Credits.

Rules & Requirements
Grading Status: Letter grade.
Same as: BIOL 953.

MASC 993. Master's Research and Thesis. 3 Credits.

Rules & Requirements
Repeat Rules: May be repeated for credit.

MASC 994. Doctoral Research and Dissertation. 3 Credits.

Rules & Requirements
Repeat Rules: May be repeated for credit.

Contact Information
Chair
Eric Kirby
ekirby@unc.edu

Director of Graduate Studies (GEOL)
Donna Surge
donna64@email.unc.edu

Director of Graduate Admissions (GEOL)
Xiaoming Liu
xiaomliu@email.unc.edu

Director of Graduate Studies (MASC)
Brent McKee
bamckee@email.unc.edu

Director of Graduate Admissions (MASC)
Johanna Rosman
jrosman@unc.edu

Student Services Manager
Violet Anderson
vmanders@email.unc.edu