DEPARTMENT OF CHEMISTRY (GRAD)

Contact Information
Department of Chemistry
Visit Program Website (http://www.chem.unc.edu)
Jeffrey Johnson, Chair

The Department of Chemistry offers graduate programs leading to the degrees of master of arts, master of science (non-thesis), and doctor of philosophy in the fields of analytical, biological, inorganic, organic, physical, and polymer and materials chemistry. Reinforcing the broad nature of our graduate program, we have close interactions with various departments, including the Departments of Physics and Astronomy, Biochemistry and Biophysics, Environmental Science and Engineering, and the Biological and Biomedical Sciences Program.

Research Interests

Analytical
Development of instrumentation for ultra-high pressure capillary liquid chromatography, capillary electrophoresis, and combined two-dimensional separations. Applications include proteomics and measurement of peptide hormones in biological tissues. Mass spectrometry of biological, environmental, organic, and polymeric compounds; tandem MS, ion activation, ion molecule reactions; instrument development. Electrochemistry: new methods for study of biological media, neurotransmitters small spaces, redox solids, chemically modified surfaces, nanoparticle chemistry, and quantum size effects including the analytical chemistry of nanoparticles. Chemical microsystems: microfabricated fluidics technologies (i.e., lab-on-a-chip devices) to address biological measurement problems such as protein expression, cell signaling, and clinical diagnostics. Miniaturized mass spectrometers for environmental monitoring. Nanoscale fluidics devices for single molecule DNA sequencing and chemical sensing. Polymeric membranes to improve the analytical performance of in vivo sensors and enable accurate measurement of analytes in challenging milieu.

Biological
Structure-function relationships of complex biochemical processes; the molecular basis of disease; chemical biology; biophysics; mechanism of protein biosynthesis; metabolic regulation; gene organization and regulation of gene expression; biomolecular structure; protein folding; protein and RNA chemistry under physiologically relevant conditions, in-cell NMR; thermodynamics of protein-protein interactions; characterization of protein-protein and protein-DNA complexes by atomic force microscopy and single molecule fluorescence; in vitro and in vivo studies of DNA repair; RNA structure in vivo, RNA and viral genomics, transcriptome structure, assembly of biomedically important RNA-protein complexes; chemical synthesis of peptides and proteins; protein engineering through chemical synthesis and directed evolution; unnatural amino acid mutagenesis; molecular modeling of biomolecules; cell surface biophysics; fluorescence microscopy and spectroscopy; small molecule and protein microarray development; live cell fluorescence microscopy; genomics-driven natural product discovery; natural product biosynthesis and pathway engineering and design; synthetic biology; antibiotic mechanism of action; bioinformatics; metabolomics; small molecules involved in inter- and intra-species signaling.

Inorganic
Physical inorganic chemistry: electronic structure of transition metal complexes; photochemistry and electrochemistry of metal complexes; use of coordination complexes and inorganic materials for solar energy harvesting and conversion; molecular orbital theory, nuclear magnetic resonance and electron paramagnetic resonance spectroscopies; X-ray crystallography; infrared and Raman spectroscopies. Chemistry of transition metal complexes: synthesis of transition metal compounds, organometallic chemistry including metal-catalyzed organic reactions; reactions of coordinated ligands; kinetics and mechanisms of inorganic reactions; metal cluster chemistry; chiral supramolecular chemistry. Materials chemistry: molecular precursors to materials; solid state lattice design; metal-ion containing thin films; metal-polymer complexes; functional coordination polymers and metal-organic frameworks; chiral porous solids. Bioinorganic and medicinal inorganic chemistry: nanomaterials for biomedical imaging and anticancer drug delivery; reactivity of oxidized metal complexes with nucleic acids, photo-induced DNA cleavage, synthesis and characterization of model complexes for metalloenzymes.

Organic
Synthesis and biological reactions of natural products; peptide synthesis; protein engineering; structure-function studies on polypeptides and proteins; mechanistic and synthetic studies in organometallic chemistry; catalysis using organometallic complexes; nuclear magnetic resonance; kinetics; organosulfur and organophosphorus chemistry; surface effects in chemical behavior; chemistry of reactive intermediates including carbocations, carbanions, carbenes radical ions and radical pairs; photochemistry; light-driven organic catalysis; fluorescent sensors; enzyme inhibitors; new synthetic methods including asymmetric catalysis; stereochemistry and conformational analysis; design and synthesis of models for metalloenzymes; epr investigations of electronic couplings in high-spin organic molecules; spectroscopic studies of free radicals; synthesis and characterization of well-defined polymeric materials; synthesis of materials for use in microelectronics; homogeneous and heterogeneous polymerizations in supercritical fluids; synthesis of engineering polymers; molecular recognition.

Physical Chemistry
Ultrafast spectroscopy, femtosecond laser techniques to study photochemistry (e.g., energy transfer, proton coupled electron transfer) in systems including carbon nanotubes, light harvesting proteins, and several materials relevant to the production of solar fuels. Nonlinear Optics: lasers pulses with widely tunable bandwidths and frequencies with new nonlinear optical methods. Molecular interactions and dynamics in cells using optical Kerr effect and phase contrast methods. Spatial and temporal resolution of energy and charge transport within individual metal oxide nanoparticles using pump-probe microscopies. Biophysics: movements and interactions of regulatory proteins in cell nuclei using optical microscopies (e.g., FRET, FCS). Coherent quantum effects in photosynthesis using new laser spectroscopies analogous to multidimensional NMR techniques. Theoretical Chemistry: molecular dynamics simulations to study the structures and dynamics of biological membranes in addition to the properties of aqueous solutions next to such membranes. Laser spectroscopy in cooled molecular beams of transient species, ions and molecular complexes, subdoppler infrared spectroscopy, ion photodissociation studies, development of spectroscopic techniques, double resonance spectroscopy, pulsed field gradient NMR and NMR imaging. Application of optical and mass spectroscopies to study atmospheric chemistry. Quantum chemistry, density functional theory, quantum biology of neurotransmitters and
pharmaceutical agents, energy minimization, protein dynamics, cooperativity, molecular graphics, mutagenesis, statistical mechanics of a liquid phase, structure and dynamics of aqueous solutions, kinetics in condensed phases, mechanical properties of polymers, state-to-state chemistry, reactions and energy transfer at solid surfaces. Polymer properties: preparation of and nonlinear optical effects in polymeric systems, self-organized polymers, and liquid crystalline materials.

Polymer and Materials Chemistry

Synthesis, properties, and utilization of novel functional materials for various applications ranging from medicine and microelectronics to oil recovery and climate change. The many-pronged approach includes synthesis and molecular characterization of multifunctional monomers and polymers, computer modeling and intelligent design of molecular architectures that are able to sense, process, and respond to impacts from the surrounding environment, and preparation of new engineering thermoplastics and liquid crystalline materials. Recent efforts funded by the National Cancer Institute, National Institute of Health, Advanced Energy Consortium, and Army Research Office are focused on lithographic design of organic nanoparticles for the detection, diagnosis, and treatment of diseases (especially cancer), self-healing, shape-memory, mechancatalysis, organic solar cells, and imaging contrast agents for oil exploration. A broad variety of expertise includes imaging and probing of submicrometer surface structures by scanning probe microscopy, dynamic mechanical analysis, characterization of polymer dynamics by NMR techniques and light scattering, microfluidics and drug delivery control, measurement of molecular conductivity and energy conversion efficiency, and analytical as well as computational and numerical studies of soft materials, such as polymers, colloids, and liquid crystals.

Facilities and Equipment

Research is carried out in the William Rand Kenan Jr. Laboratories, a facility of 130,000 square feet completed in 1971, and the W. Lowry and Susan S. Caudill Laboratories, a facility of 71,000 square feet completed in 2006. The undergraduate laboratories are housed in the modern John Motley Morehead Laboratories, completed in 1986. Included in the department are some major facilities managed by Ph.D.-level staff scientists. The NMR laboratory includes five high-resolution FT-NMR spectrometers ranging from 300 to 600 MHz for liquids: two 400 MHz, 500 MHz, and 600 MHz Bruker spectrometers, and a 600 MHz Agilent/Varian spectrometer. The Bruker 600 MHz spectrometer is equipped with two cryoprobes for ultra-high sensitivity and a sample changer. There is also a Bruker 360 MHz wide bore FT-NMR spectrometer suitable for solid polymeric samples with magic angle spinning. The MS laboratory houses a Bruker BioTOF II Reflecton Time of Flight Mass Spectrometer (ESI/nESI), an Agilent HPLC Quadrupole Mass Spectrometer (ESI, APCI), a Bruker 820 ICP-MS for elemental analysis, a Thermo LTqFT with 7.0 Tesla magnet primary used for accurate mass measurements, a Photon Machines 192 Eximer Laser integrated onto a Thermo Element XR ICP-MS for elemental analysis of both solution and solid material, and a Micromass Quattro II Triple Quadrupole Mass Spectrometer. An IonSpec 9.4 Tesla FTICR is also available for conducting high-resolution electrospray and MALDI experiments. The X-ray laboratory is equipped with a Bruker AXS SMART APEX2 single crystal diffractometer and Rigaku Multiflex powder diffractometer.

Computing services are among the most important for modern research. The University’s computing resources that currently reside in Information Technology Services (ITS) include

- Emerald (Linux) - Beowulf Red Hat Linux cluster consisting of ~830 Intel Xeon IBM Blade Center processors ranging from 2.0–3.2GHz
- Emerald (AIX) - High memory (32+GB) Power5 AIX cluster with 64 processors
- Topsail - 520 blade Dell Linux server with 2 quad-core 2.3 GHz Intel EM64T processors for 4160 total processors
- A variety of specialty machines that provide services for statistics, bioinformatics, and database applications.

A number of the individual research laboratories in the Department of Chemistry own Silicon Graphics- or Linux-based workstations. Numerous software packages of interest to chemical, biochemical, and materials researchers are maintained for use on central systems by the ITS Research Computing group (Accelrys, Gaussian, MolPro, NWChem, CIBM, AMBER, Gromacs, Sybyl, SAS, Stata, Mathematica, ECCE, Gaussview, Schrodinger, etc.). The combined hardware and software resources are tailored to meet the needs of a broad range of chemists working on applications in quantum mechanics, molecular dynamics, NMR, X-RAY, structural biology, and bioinformatics.

To support the research programs, the department provides a number of services. Glass and electronics facilities are provided to assist in construction and maintenance of specialized equipment. Technicians are also available to run certain specialized instruments. The William Rand Kenan Jr. Chemistry Library is located in Venable/Murray Hall. The majority of the Chemistry Library’s journal subscriptions and databases are available online for 24-hour access from campus workstations and other workstations that meet licensing requirements. The collection also includes many print reference works and monographs that are available for checkout or use in the reading room when the library is open. Reference and instructional services are also available at the library service desk and by arrangement with library staff.

Financial Aid and Admission

The department awards a number of industrial fellowships and predoctoral research and teaching appointments. All outstanding prospective graduate students who apply for admission/support are automatically considered for fellowships.

There are more than 200 graduate students in the department. All are supported either as teaching assistants (27 percent), research assistants (65 percent), or as fellows (8 percent) supported by The Graduate School, industry, or the United States government. The duties of the teaching assistants include the preparation for and supervision of laboratory classes in undergraduate courses and the grading of laboratory reports.

Applications for assistantships and fellowships should be made before the end of January, although applicants for assistantships are considered after that date. All applicants (international and domestic) must take the Graduate Record Examination (GRE). All international students whose native language is not English must take the Test of English as a Foreign Language (TOEFL) examination in addition to the Graduate Record Examination. However, international students who hold a degree from a university in the United States may be exempt. Both the TOEFL and the GRE should be taken as early as possible for fall acceptance, preferably in October.

Application forms for admission can be completed online at the Graduate School’s Web site (http://gradschool.unc.edu/admissions). Financial support as well as information about the department can be obtained from the Chemistry Department’s graduate Web site (http://
www.chem.unc.edu/grads). Questions about our program may be directed to the e-mail address chemgs@unc.edu.

Doctor of Philosophy
The Ph.D. degree in chemistry is a research degree, and students normally begin research during the first year in graduate school. As soon as the entering student has selected a research advisor, an advisory committee is established to develop an appropriate course of study designed to meet individual needs. The Ph.D. degree consists of completion of a suitable program of study, a preliminary doctoral oral examination, a written comprehensive examination that is satisfied by cumulative examinations, an original research project culminating in a dissertation, and a final oral examination.

Master of Arts
The master of arts degree requires a minimum of 30 semester hours of credit. The student’s advisory committee determines courses. A written comprehensive examination (which may be satisfied by cumulative examinations), a thesis, and a final oral examination are also required. Admission to the Ph.D. program after completion of the M.A. degree in the department requires approval by the Chemistry Graduate Studies Committee.

Master of Science (Non-Thesis)
The master of science (non-thesis) degree requires a minimum of 30 semester hours. The candidate must earn at least 24 hours of graduate credit in chemistry and allied subjects, which may include graduate seminars numbered 700 or higher but may not include CHEM 921, CHEM 931, CHEM 941, CHEM 951, CHEM 961, and CHEM 981 (referred to collectively as “9X1”). As a substitute for the thesis, the candidate must earn a minimum of three hours of CHEM 992 (master’s non-thesis option). The student’s advisory committee determines the student’s program of study. A written report submitted to the student’s research director describing work done while registered for CHEM 992 and a written examination (which may be satisfied by cumulative examinations) are also required. Admission to the Ph.D. program after completing the M.S. degree in the department requires approval by the Chemistry Graduate Studies Committee.

Following the faculty member’s name is a section number that students should use when registering for independent studies, reading, research, and thesis and dissertation courses with that particular professor.

Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nancy L. Allbritton (50)</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>Todd L. Austell (70)</td>
<td>Chemistry Education, Academic Advising, Lab Curriculum Development</td>
</tr>
<tr>
<td>Max L. Berkowitz (30)</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Michael T. Crimmins (39)</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>Joseph M. DeSimone (49)</td>
<td>Synthetic Polymer Chemistry</td>
</tr>
<tr>
<td>Dorothy A. Eri (11)</td>
<td>Physical and Biological Chemistry</td>
</tr>
<tr>
<td>Michel R. Gagné (22)</td>
<td>Inorganic, Organic and Polymer Chemistry</td>
</tr>
<tr>
<td>Gary L. Glish (40)</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>Jeffrey S. Johnson (58)</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>John M. Papanikolas (52)</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Gary J. Pielak (46)</td>
<td>Biological Chemistry</td>
</tr>
<tr>
<td>J. Michael Ramsey (62)</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>Matthew R. Redinbo (55)</td>
<td>Biological Chemistry</td>
</tr>
<tr>
<td>Mark H. Schoenfisch (57)</td>
<td>Analytical and Materials Chemistry</td>
</tr>
<tr>
<td>Sergei S. Sheyko (59)</td>
<td>Polymer and Materials Chemistry</td>
</tr>
<tr>
<td>Joseph L. Templeton (31)</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>Nancy L. Thompson (41)</td>
<td>Physical and Biological Chemistry</td>
</tr>
<tr>
<td>Marcey Waters (56)</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>Kevin M. Weeks (53)</td>
<td>Biological Chemistry</td>
</tr>
<tr>
<td>Richard V. Wolfenden (65)</td>
<td>Biological Chemistry</td>
</tr>
<tr>
<td>Wei You (42)</td>
<td>Polymer and Materials Chemistry</td>
</tr>
</tbody>
</table>

Associate Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erik J. Alexanian (77)</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>James F. Cahoon (80)</td>
<td>Polymer and Materials Chemistry</td>
</tr>
<tr>
<td>Brian P. Hogan (72)</td>
<td>Chemistry Education, Academic Advising, Lab Curriculum Development</td>
</tr>
<tr>
<td>Yousu Ke (81)</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Andrew M. Moran (6)</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>David A. Nicewicz (78)</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>Cynthia K. Schauer (45)</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>Domenic Tiani (71)</td>
<td>Chemistry Education, Academic Advising, Lab Curriculum Development</td>
</tr>
</tbody>
</table>

Assistant Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joanna M. Atkin (86)</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Jillian L. Dempsey (3)</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>Jeffrey E. Dick (13)</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>Leslie M. Hicks (35)</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>Abigail Knight (12)</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>Frank A. Leibfarth (10)</td>
<td>Polymer and Materials Chemistry</td>
</tr>
<tr>
<td>Bo Li (85)</td>
<td>Biological Chemistry</td>
</tr>
<tr>
<td>Matthew R. Lockett (37)</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>Zhiyue Lu (009)</td>
<td>Theoretical Chemistry</td>
</tr>
<tr>
<td>Simon J. Meek (79)</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>Alexander J. Miller (4)</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>Scott C. Warren (63)</td>
<td>Polymer and Materials Chemistry</td>
</tr>
<tr>
<td>Sidney M. Wilkerson-Hill (14)</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>Alex Zhukovitskiy (008)</td>
<td>Polymer and Materials Chemistry</td>
</tr>
</tbody>
</table>

Professors Emeriti

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomas Baer</td>
<td></td>
</tr>
<tr>
<td>Maurice M. Bursey</td>
<td></td>
</tr>
<tr>
<td>James L. Coke</td>
<td></td>
</tr>
<tr>
<td>Richard G. Hiskey</td>
<td></td>
</tr>
<tr>
<td>Eugene A. Irene</td>
<td></td>
</tr>
<tr>
<td>Richard C. Jarmagin</td>
<td></td>
</tr>
<tr>
<td>Donald C. Jich</td>
<td></td>
</tr>
<tr>
<td>Charles S. Johnson Jr.</td>
<td></td>
</tr>
<tr>
<td>James W. Jorgenson</td>
<td></td>
</tr>
<tr>
<td>Paul J. Kropp</td>
<td></td>
</tr>
<tr>
<td>Thomas J. Meyer</td>
<td></td>
</tr>
<tr>
<td>Robert G. Parr</td>
<td></td>
</tr>
<tr>
<td>Lee G. Pedersen</td>
<td></td>
</tr>
<tr>
<td>Royce W. Murray</td>
<td></td>
</tr>
<tr>
<td>Michael Rubinstein</td>
<td></td>
</tr>
<tr>
<td>R. Mark Wightman</td>
<td></td>
</tr>
</tbody>
</table>
Chemistry (CHEM)

Advanced Undergraduate and Graduate-level Courses

CHEM 410. Instructional Methods in the Chemistry Classroom. 4 Credits.
Permission of the instructor. This course explores secondary school chemical education through current chemical education theory and classroom teaching. Students will develop a comprehensive approach to teaching chemistry content through student-centered activities.
Requisites: Prerequisites, CHEM 262 or 262H.
Gen Ed: EE: Field Work.
Grading status: Letter grade.

CHEM 420. Introduction to Polymer Chemistry. 3 Credits.
Chemical structure and nomenclature of macromolecules, synthesis of polymers, characteristic polymer properties.
Requisites: Prerequisite, CHEM 261 or 261H; pre- or corequisites, CHEM 262 or 262H, and 262L or 263L.
Grading status: Letter grade
Same as: APPL 420.

CHEM 421. Synthesis of Polymers. 3 Credits.
Synthesis and reactions of polymers; various polymerization techniques.
Requisites: Prerequisites, CHEM 251 and 262 or 262H.
Grading status: Letter grade
Same as: APPL 421.

CHEM 422. Physical Chemistry of Polymers. 3 Credits.
Polymerization and characterization of macromolecules in solution.
Requisites: Prerequisites, CHEM 420 and 481.
Grading status: Letter grade
Same as: APPL 422.

CHEM 423. Intermediate Polymer Chemistry. 3 Credits.
Polymer dynamics, networks and gels.
Requisites: Prerequisite, CHEM 422.
Grading status: Letter grade
Same as: APPL 423.

CHEM 425. Polymer Materials. 3 Credits.
Solid-state properties of polymers; polymer melts, glasses and crystals.
Requisites: Prerequisite, CHEM 421 or 422.
Grading status: Letter grade.

CHEM 430. Introduction to Biological Chemistry. 3 Credits.
The study of cellular processes including catalysts, metabolism, bioenergetics, and biochemical genetics. The structure and function of biological macromolecules involved in these processes is emphasized. Honors version available
Requisites: Prerequisites, BIOL 101, and CHEM 262 or 262H.
Grading status: Letter grade
Same as: BIOL 430.

CHEM 430H. Introduction to Biological Chemistry. 3 Credits.
The study of cellular processes including catalysts, metabolism, bioenergetics, and biochemical genetics. The structure and function of biological macromolecules involved in these processes is emphasized.
Requisites: Prerequisites, BIOL 101, and CHEM 262 or 262H.
Grading status: Letter grade
Same as: BIOL 430H.

CHEM 431. Macromolecular Structure and Metabolism. 3 Credits.
Structure of DNA and methods in biotechnology; DNA replication and repair; RNA structure, synthesis, localization and transcriptional regulation; protein structure/function, biosynthesis, modification, localization, and degradation.
Requisites: Prerequisites, BIOL 202 and CHEM 430.
Grading status: Letter grade.

CHEM 432. Metabolic Chemistry and Cellular Regulatory Networks. 3 Credits.
Biological membranes, membrane protein structure, transport phenomena; metabolic pathways, reaction themes, regulatory networks; metabolic transformations with carbohydrates, lipids, amino acids, and nucleotides; regulatory networks, signal transduction.
Requisites: Prerequisite, CHEM 430.
Grading status: Letter grade.

CHEM 433. Transport in Biological Systems. 1 Credit.
Permission of the instructor for undergraduates. Diffusion, sedimentation, electrophoresis, flow. Basic principles, theoretical methods, experimental techniques, role in biological function, current topics.
Requisites: Prerequisites, CHEM 430 and MATH 383.
Grading status: Letter grade.

CHEM 441. Intermediate Analytical Chemistry. 2 Credits.
Spectroscopy, electroanalytical chemistry, chromatography, thermal methods of analysis, signal processing.
Requisites: Prerequisites, CHEM 241, 241L, 262, and 480 or 481.
Grading status: Letter grade.

CHEM 441L. Intermediate Analytical Chemistry Laboratory. 2 Credits.
Experiments in spectroscopy, electroanalytical chemistry, chromatography, thermal methods of analysis, and signal processing. One four-hour laboratory a week and one one-hour lecture.
Requisites: Corequisite, CHEM 441.
Grading status: Letter grade.

CHEM 443. Surface Analysis. 3 Credits.
This class will focus on analytical techniques capable of probing the physical and chemical properties of surfaces and interfaces. These analyses are extremely challenging, as the sample sizes are small (e.g., 1E14 molecules/cm2 of a material). The course will focus on complementary techniques to assess surface structure and topography, atomic and molecular composition, organization or disorder, and reactivity.
Requisites: Prerequisite, CHEM 441 or CHEM 481; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

CHEM 444. Separations. 3 Credits.
Theory and applications of equilibrium and nonequilibrium separation techniques. Extraction, countercurrent distribution, gas chromatography, column and plane chromatographic techniques, electrophoresis, ultra-centrifugation, and other separation methods.
Requisites: Prerequisites, CHEM 441 and CHEM 480 or 481.
Grading status: Letter grade.

CHEM 445. Electroanalytical Chemistry. 3 Credits.
Basic principles of electrochemical reactions, electroanalytical voltammetry as applied to analysis, the chemistry of heterogeneous electron transfers, and electrochemical instrumentation.
Requisites: Prerequisite, CHEM 480 or 481.
Grading status: Letter grade.
CHEM 446. Analytical Spectroscopy. 3 Credits.
Optical spectroscopic techniques for chemical analysis including conventional and laser-based methods. Absorption, fluorescence, scattering and nonlinear spectroscopies, instrumentation and signal processing.
Requisites: Prerequisites, CHEM 441 and 482.
Grading status: Letter grade.

CHEM 447. Bioanalytical Chemistry. 3 Credits.
Principles and applications of biospecific binding as a tool for performing selective chemical analysis.
Requisites: Prerequisite, CHEM 441.
Grading status: Letter grade.

CHEM 448. Mass Spectrometry. 3 Credits.
Fundamental theory of gaseous ion chemistry, instrumentation, combination with separation techniques, spectral interpretation for organic compounds, applications to biological and environmental chemistry.
Requisites: Prerequisite, CHEM 480 or 481.
Grading status: Letter grade.

CHEM 449. Microfabricated Chemical Measurement Systems. 3 Credits.
Introduction to micro and nanofabrication techniques, fluid and molecular transport at the micrometer to nanometer length scales, applications of microtechnology to chemical and biochemical measurements.
Requisites: Prerequisite, CHEM 441.
Grading status: Letter grade.

CHEM 450. Intermediate Inorganic Chemistry. 3 Credits.
Introduction to symmetry and group theory; bonding, electronic spectra, and reaction mechanisms of coordination complexes; organometallic complexes, reactions, and catalysis; bioinorganic chemistry.
Requisites: Prerequisite, CHEM 251.
Grading status: Letter grade.

CHEM 451. Theoretical Inorganic Chemistry. 3 Credits.
Chemical applications of symmetry and group theory, crystal field theory, molecular orbital theory. The first third of the course, corresponding to one credit hour, covers point symmetry, group theoretical foundations and character tables.
Requisites: Prerequisites, CHEM 262 or 262H and 450.
Grading status: Letter grade.

CHEM 452. Electronic Structure of Transition Metal Complexes. 3 Credits.
A detailed discussion of ligand field theory and the techniques that rely on the theoretical development of ligand field theory, including electronic spectroscopy, electron paramagnetic resonance spectroscopy, and magnetism.
Requisites: Prerequisite, CHEM 451.
Grading status: Letter grade.

CHEM 453. Physical Methods in Inorganic Chemistry. 3 Credits.
Introduction to the physical techniques used for the characterization and study of inorganic compounds. Topics typically include nuclear magnetic resonance spectroscopy, vibrational spectroscopy, diffraction, Mossbauer spectroscopy, X-ray photoelectron spectroscopy, and inorganic electrochemistry.
Requisites: Prerequisite, CHEM 451.
Grading status: Letter grade.

CHEM 460. Intermediate Organic Chemistry. 3 Credits.
Modern topics in organic chemistry. Honors version available
Requisites: Prerequisite, CHEM 262 or 262H.
Grading status: Letter grade.

CHEM 460H. Intermediate Organic Chemistry. 3 Credits.
Modern topics in organic chemistry.
Requisites: Prerequisite, CHEM 262 or 262H.
Grading status: Letter grade.

CHEM 465. Mechanisms of Organic and Inorganic Reactions. 4 Credits.
Kinetics and thermodynamics, free energy relationships, isotope effects, acidity and basicity, kinetics and mechanisms of substitution reactions, one- and two-electron transfer processes, principles and applications of photochemistry, organometallic reaction mechanisms.
Requisites: Prerequisite, CHEM 450.
Grading status: Letter grade.

CHEM 466. Advanced Organic Chemistry I. 3 Credits.
A survey of fundamental organic reactions including substitutions, additions, elimination, and rearrangements; static and dynamic stereochemistry; conformational analysis; molecular orbital concepts and orbital symmetry.
Requisites: Prerequisite, CHEM 460.
Grading status: Letter grade.

CHEM 471. Mathematical Techniques for Chemists. 3 Credits.
Knowledge of differential and integral calculus. Chemical applications of higher mathematics.
Requisites: Prerequisite, MATH 383; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

CHEM 472. Chemistry and Physics of Electronic Materials Processing. 3 Credits.
Permission of the instructor. A survey of materials processing and characterization used in fabricating microelectronic devices. Crystal growth, thin film deposition and etching, and microlithography.
Requisites: Prerequisite, CHEM 482 or PHYS 117 or 119.
Grading status: Letter grade
Same as: PHYS 472, APPL 472.
CHEM 473. Chemistry and Physics of Surfaces. 3 Credits.
The structural and energetic nature of surface states and sites, experimental surface measurements, reactions on surfaces including bonding to surfaces and adsorption, interfaces.
Requisites: Prerequisite, CHEM 470.
Grading status: Letter grade
Same as: APPL 473.

CHEM 480. Introduction to Biophysical Chemistry. 3 Credits.
Does not carry credit toward graduate work in chemistry or credit toward any track of the B.S. degree with a major in chemistry. Application of thermodynamics to biochemical processes, enzyme kinetics, properties of biopolymers in solution.
Requisites: Prerequisites, CHEM 261 or 261H, MATH 232, and PHYS 105.
Grading status: Letter grade.

CHEM 481. Physical Chemistry I. 3 Credits.
Thermodynamics, kinetic theory, chemical kinetics.
Requisites: Prerequisites, CHEM 102 or 102H, PHYS 118 or 116; pre- or corequisites, MATH 383 and PHYS 119 or 117; C- or better required in chemistry course prerequisites.
Grading status: Letter grade.

CHEM 481L. Physical Chemistry Laboratory I. 2 Credits.
Experiments in physical chemistry. One four-hour laboratory each week.
Requisites: Corequisite, CHEM 482.
Grading status: Letter grade.

CHEM 482. Physical Chemistry II. 3 Credits.
Introduction to quantum mechanics, atomic and molecular structure, spectroscopy, statistical mechanics.
Requisites: Prerequisite, CHEM 481.
Grading status: Letter grade.

CHEM 482L. Physical Chemistry Laboratory II. 2 Credits.
Experiments in physical chemistry. Solving thermodynamic and quantum mechanical problems using computer simulations. One three-hour laboratory and a single one-hour lecture each week.
Requisites: Prerequisite, CHEM 482.
Grading status: Letter grade.

CHEM 484. Thermodynamics and Introduction to Statistical Thermodynamics. 1-21 Credits.
Thermodynamics, followed by an introduction to the classical and quantum statistical mechanics and their application to simple systems. The section on thermodynamics can be taken separately for one hour credit.
Requisites: Prerequisite, CHEM 482.
Grading status: Letter grade.

CHEM 485. Chemical Dynamics. 3 Credits.
Experimental and theoretical aspects of atomic and molecular reaction dynamics.
Requisites: Prerequisites, CHEM 481 and 482.
Grading status: Letter grade.

CHEM 486. Introduction to Quantum Chemistry. 3 Credits.
Introduction to the principles of quantum mechanics. Approximation methods, angular momentum, simple atoms and molecules.
Requisites: Prerequisites, CHEM 481 and 482.
Grading status: Letter grade.

CHEM 487. Introduction to Molecular Spectroscopy. 3 Credits.
Interaction of radiation with matter; selection rules; rotational, vibrational, and electronic spectra of molecules; laser based spectroscopy and nonlinear optical effects.
Requisites: Prerequisite, CHEM 486.
Grading status: Letter grade.

CHEM 488. Quantum Chemistry. 3 Credits.
Applications of quantum mechanics to chemistry. Molecular structure, time-dependent perturbation theory, interaction of radiation with matter.
Requisites: Prerequisite, CHEM 486.
Grading status: Letter grade.

CHEM 489. Statistical Mechanics. 3 Credits.
Applications of statistical mechanics to chemistry. Ensemble formalism, condensed phases, nonequilibrium processes.
Requisites: Prerequisite, CHEM 484.
Grading status: Letter grade.

CHEM 520L. Polymer Chemistry Laboratory. 2 Credits.
Various polymerization techniques and characterization methods. One four-hour laboratory each week.
Requisites: Pre- or corequisite, CHEM 420 or 421 or 425.
Grading status: Letter grade
Same as: APPL 520L.

CHEM 530L. Laboratory Techniques for Biochemistry. 3 Credits.
An introduction to chemical techniques and research procedures of use in the fields of protein and nucleic acid chemistry. Two four-hour laboratories and one one-hour lecture a week.
Requisites: Prerequisites, BIOL 202; pre- or co-requisite, CHEM 430.
Grading status: Letter grade.

CHEM 541. Analytical Microscopy. 3 Credits.
Introduction to microscopy techniques utilized in the analysis of chemical and biological samples with a focus on light, electron, and atomic force microscopy. Permission of instructor required for those missing prerequisites.
Grading status: Letter grade.

CHEM 550L. Synthetic Chemistry Laboratory I. 2 Credits.
A laboratory devoted to synthesis and characterization of inorganic complexes and materials. A four-hour synthesis laboratory, a characterization laboratory outside of the regular laboratory period, and a one-hour recitation each week.
Requisites: Prerequisites, CHEM 241L or 245L, 251, and 262L or 263L.
Gen Ed: CI.
Grading status: Letter grade.

CHEM 560L. Synthetic Organic Laboratory. 2 Credits.
An advanced synthesis laboratory focused on topics in organic chemistry. A four-hour synthesis laboratory, a characterization laboratory outside of the regular laboratory period, and one one-hour recitation each week.
Requisites: Prerequisites, CHEM 241L, 245L, 262L, 263L.
Grading status: Letter grade.

CHEM 692H. Senior Honors Thesis. 3 Credits.
CHEM 395 must have been in the same laboratory as 692H. Senior majors only. Required of all candidates for honors or highest honors.
Requisites: Prerequisite, six credit hours of CHEM 395.
Grading status: Letter grade.
Graduate-level Courses

CHEM 701. Introduction to Laboratory Safety. 1 Credit.
Permission of the instructor for undergraduates. This introductory
course in laboratory chemical safety is required for all entering chemistry
graduates. Topics include laboratory emergencies, chemical
hazards, laboratory inspections and compliance, working with chemicals,
waste handling, case studies of university accidents, laboratory
equipment, biosafety, radiation, animals, and microfabrication and
nanomaterials.
Grading status: Letter grade.

CHEM 721. Seminar in Materials Chemistry. 2 Credits.
Graduate standing required.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

CHEM 730. Chemical Biology. 2-4 Credits.
Application of chemical principles and tools to study and manipulate
biological systems; in-depth exploration of examples from the
contemporary literature. Topics include new designs for the genetic code,
drug design, chemical arrays, single molecule experiments, laboratory-
based evolution, chemical sensors, and synthetic biology.
Requisites: Prerequisite, CHEM 430.
Grading status: Letter grade.

CHEM 731. Seminar in Biological Chemistry. 2 Credits.
Graduate standing required. Literature survey dealing with topics in
protein chemistry and nucleic acid chemistry.
Grading status: Letter grade.

CHEM 732. Advances in Macromolecular Structure and Function. 3
Credits.
In-depth analysis of the structure-function relationships governing
protein-protein and protein-nucleic acid interactions. Topics include
replication, DNA repair, transcription, translation, RNA processing, protein
complex assembly, and enzyme regulation. Course includes both the
current and classic literature that highlight the techniques used to study
these processes.
Grading status: Letter grade.

CHEM 733. Special Topics in Biological Chemistry. 0.5-21 Credits.
Modern topics in biological chemistry.
Grading status: Letter grade.

CHEM 741. Literature Seminar in Analytical Chemistry. 2 Credits.
Graduate standing required. Colloquium of modern analytical chemistry
topics presented by graduate students and select invited speakers.
Grading status: Letter grade.

CHEM 742. Analytical Research Techniques. 2 Credits.
Introduction to chemical instrumentation including digital and analog
electronics, computers, interfacing, and chemometric techniques. Two
one-hour lectures a week.
Grading status: Letter grade.

CHEM 742L. Laboratory in Analytical Research Techniques. 2 Credits.
Experiments in digital and analog instrumentation, computers, interfacing
and chemometrics, with applications to chemical instrumentation.
Requisites: Co-requisite, CHEM 742.
Grading status: Letter grade.

CHEM 744. Special Topics in Analytical Chemistry. 0.5-21 Credits.
Modern topics in analytical chemistry, including advanced
electroanalytical chemistry, advanced mass spectrometry, chemical
instrumentation, and other subjects of recent significance. Two lecture
hours a week.
Grading status: Letter grade.

CHEM 744L. Laboratory in Special Topics in Analytical Chemistry. 2
Credits.
Experiments in digital and analog instrumentation, computers, interfacing
and chemometrics, with applications to chemical instrumentation.
Requisites: Co-requisite, CHEM 744.
Grading status: Letter grade.

CHEM 745. Analytical Technical Writing Workshop. 1 Credit.
Students will participate in 12 workshop sessions co-presented by the
instructor and TA covering the basics of technical writing. Each workshop
is designed to help students prepare successful proposals for external
graduate fellowships, but skills practiced are readily extended to the 2nd-
year prospectus, manuscript preparation, the thesis, and beyond.
Repeat rules: May be repeated for credit. 3 total credits. 1 total
completions.
Grading status: Letter grade.

CHEM 752. Special Topics in Inorganic Chemistry. 0.5-21 Credits.
Permission of the instructor. Research-level survey of topics in inorganic
chemistry and related areas.
Grading status: Letter grade.

CHEM 754. Literature Seminar in Inorganic Chemistry. 2 Credits.
Graduate standing required.
Grading status: Letter grade.

CHEM 755. Inorganic Technical Writing Workshop. 1 Credit.
Students will participate in 11 workshop sessions co-presented by the
instructor and TA covering the basics of technical writing. They are
designed to help students prepare successful proposals for external
graduate fellowships, but skills practiced are readily extended to the 2nd-
year prospectus, 3rd-year proposal, manuscript preparation, the thesis,
and beyond.
Grading status: Letter grade.

CHEM 758. X-Ray Structure Determination. 3 Credits.
Required preparation, knowledge of elementary and differential calculus
is assumed. Permission of the instructor. This course is designed to
introduce students to the techniques used in solving crystal structures by
X-ray diffraction. Three lecture hours a week.
Grading status: Letter grade.

CHEM 761. Seminar in Organic Chemistry. 2 Credits.
Graduate standing required. One afternoon meeting a week and individual
consultation with the instructor.
Grading status: Letter grade.

CHEM 764. Special Topics in Organic Chemistry. 0.5-21 Credits.
Two lecture hours a week.
Grading status: Letter grade.

CHEM 767. Organic Chemistry. 0.5-21 Credits.
Permission of the instructor. Three to six hours a week.
Grading status: Letter grade.

CHEM 780. Advanced Materials Science. 3 Credits.
This course covers the physical fundamentals of material science with
an in-depth discussion of structure formation in soft and hard materials
and how structure determines material mechanical, electrical, thermal,
and optical properties. Topics include amorphous and crystalline structures,
defects, dislocation theory, thermodynamics and phase diagrams,
diffusion, interfaces and microstructures, solidification, and theory of
phase transformation. Special emphasis will be on the structure-property
relationships of (bio)polymers, (nano)composites, and their structure
property relationships.
Grading status: Letter grade
Same as: MTSC 780, BMME 780, PHYS 780.

CHEM 781. Seminar in Physical Chemistry. 2 Credits.
Graduate standing required. Two hours a week.
Grading status: Letter grade.
CHEM 783. Special Topics in Physical Chemistry. 0.5-21 Credits.
Permission of the instructor. Modern topics in physical chemistry,
chemical physics, or biophysical chemistry. One to three lecture hours a
week.
Grading status: Letter grade.

CHEM 786. Special Topics in Physical Chemistry. 0.5-21 Credits.
Permission of the instructor. Modern topics in physical chemistry,
chemical physics, or biophysical chemistry. One to three lecture hours a
week.
Grading status: Letter grade.

CHEM 791. Special Topics in Chemistry. 1-4 Credits.
Selected research-level, cross-disciplinary topics in modern chemistry.
Grading status: Letter grade.

CHEM 921. Research Methodology and Seminar in Polymer/Materials
Chemistry. 1-21 Credits.
Seminar and directed study on research methods of polymer/materials
chemistry. This course provides a foundation for master’s thesis or
document dissertation research.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

CHEM 931. Research Methodology and Seminar in Biological Chemistry.
1-21 Credits.
Seminar and directed study on research methods of biological chemistry.
The course provides a foundation for master’s thesis or doctoral
dissertation research.
Grading status: Letter grade.

CHEM 941. Research Methodology and Seminar in Analytical Chemistry.
1-21 Credits.
Seminar and directed study on research methods of analytical chemistry.
The course provides a foundation for master’s thesis or doctoral
dissertation research.
Grading status: Letter grade.

CHEM 951. Research Methodology and Seminar in Inorganic Chemistry.
1-21 Credits.
Seminar and directed study on research methods of inorganic chemistry.
The course provides a foundation for master’s thesis or doctoral
dissertation research.
Grading status: Letter grade.

CHEM 961. Research Methodology and Seminar in Organic Chemistry.
1-21 Credits.
Seminar and directed study on research methods of organic chemistry.
The course provides a foundation for master’s thesis or doctoral
dissertation research.
Grading status: Letter grade.

CHEM 981. Research Methodology and Seminar in Physical Chemistry.
1-21 Credits.
Seminar and directed study on research methods of physical chemistry.
The course provides a foundation for master’s thesis or doctoral
dissertation research.
Grading status: Letter grade.

CHEM 992. Master’s (Non-Thesis). 3 Credits.

CHEM 993. Master’s Research and Thesis. 3 Credits.
Prerequisite, CHEM 921, 931, 941, 951, 961, or 981.
Repeat rules: May be repeated for credit.

CHEM 994. Doctoral Research and Dissertation. 3 Credits.
Prerequisite, CHEM 921, 931, 941, 951, 961, or 981.
Repeat rules: May be repeated for credit.