DEPARTMENT OF BIOCHEMISTRY AND BIOPHYSICS (GRAD)

The Department of Biochemistry and Biophysics is an administrative division of the School of Medicine and a member of The Graduate School. The graduate program offers instruction and research opportunities leading to the Ph.D. degree. Applicants are offered admission with the expectation that they will complete their doctorate. While the curriculum is designed as a Ph.D. program, a terminal master’s degree can be offered under special circumstances.

Modern research in biochemistry and biophysics is designed to address mechanism and function; it utilizes the paradigms of molecular biology but is influenced by chemistry, physics, and genetics. The philosophy of the department and its graduate program is to provide students with broad training in modern approaches to the field and unique opportunities for multidisciplinary training.

Financial Aid and Admissions

Funds available from the University, the department, and individual research grants provide stipends for students. All applicants are considered for special fellowships and research or teaching assistantships. Students typically receive a stipend and coverage of in-state tuition and fees, along with major medical insurance. Nonresidents with predoctoral fellowships or assistantships are recommended for special tuition rates. Applications are considered from prospective graduate students who present evidence of superior scholarship in biology, chemistry, or biochemistry. The department recommends that students prepare themselves by taking general and organic chemistry, biochemistry, biology, physics, and calculus. It is anticipated that students who have not had these courses will take them, as appropriate, after their arrival. Departmental information may be obtained through the department’s website (http://www.med.unc.edu/biochem/). Applicants should apply online at The Graduate School’s admission website (http://gradschool.unc.edu/admissions/).

Research Interests

Faculty member’s research interests are diverse and include research in the following areas: cell signaling and growth control, DNA repair and replication, membrane biophysics and function, molecular regulation including transcriptional control, nervous system development and function, and protein structure/function, including enzymology. Model systems used by the faculty range from bacteria to mammals; techniques span molecular biology to physical biochemistry. Please visit the department’s website (http://www.med.unc.edu/biochem/) for more information.

Facilities

The departmental research facilities are centered in the Genetic Medicine Building, which is within walking distance of other medical school departments, research centers, and the departments of biology, chemistry, and physics. The building is equipped with instruments for molecular biological, biochemical, structural, and biophysical research. Animal care facilities are available to support the department’s research endeavors. Research and training support is provided by several core facilities on campus.

Students are admitted to the graduate program through the BBSP portal, complete a minimum of three laboratory rotations, and then join the Department of Biochemistry and Biophysics at the end of their first year. All students in the department are required to complete a seminar in biochemistry (BIOC 701) or seminar in biophysics (BIOC 704); BIOC 712, which is a grant-writing course designed to help prepare students for their comprehensive written examination; and BIOC 715, which is a scientific presentation course. Students are also required to complete six credit hours in core courses and four credit hours of electives. Further information on course requirements (http://www.med.unc.edu/biochem/students/degree-requirements/) may be found online. Students in the combined M.D./Ph.D. program are required to complete all course requirements.

The director of graduate studies advises entering students about course selection until the student chooses a research sponsor. Students select research sponsors from the department’s primary and joint faculty members following the three laboratory rotations. After a research sponsor has been selected, a dissertation committee is formed to review the student’s yearly progress. The examinations required for admission to candidacy for the Ph.D. are administered as a comprehensive oral exam, a comprehensive written exam, and a final oral defense of a dissertation. The comprehensive oral exam (defense of the initial thesis proposal) will stress the dissertation proposal and related areas in an effort to ascertain the student’s understanding of the research project that he/she is undertaking. The comprehensive written examination will cover major topics in the areas of biochemistry and biophysics and cell and molecular biology. The most important requirement for the Ph.D. degree is a final oral defense of a dissertation or original research carried out independently by the candidate.

Following the faculty member’s name is a section number that students should use when registering for independent studies, reading, research, and thesis and dissertation courses with that particular professor.

Professors

Suzanne Barbour, Dean of the Graduate School
Wolfgang Bergmeier, Adhesion Mechanisms of Platelets and Neutrophils
Sharon Campbell (18), NMR Spectroscopy, Structure and Regulation of Proteins Involved in Ras-Mediated Cell Signaling
Charles W. Carter Jr. (19), Structural Molecular Biology, Protein Structure-Function, X-ray Crystallography of Proteins Including Aminocyl tRNA Synthetases, Deaminases, Phasing Methods and Crystal Growth
Xian Chen (12), Protein-Protein and Protein-Ligand Interaction, Protein Tertiary Structure, Quaternary Structure of Multi-Protein Complexes, Structure-Function Relationship of Proteins, Functional Proteomics
Jean Cook (150), Regulation of DNA Replication in Mammalian Cells
Stephen Crews (24), Molecular Genetics of Nervous System Development, Transcriptional Control, Evolution of Regulatory Mechanisms
Henrik Dohlman (17), Regulators of G Protein Signaling, Mechanisms of Drug Desensitization
Beverly Errede (144), Function and Regulation of MAP-Kinase Activation Pathways in Saccharomyces Cerevisiae
Jack Griffith (41), Architecture of DNA-Protein Complexes Involved in Replication, Repair, and Telomere Maintenance; Electron Microscopy
David G. Kaufman (53), Cellular and Molecular Mechanisms of Cancer Development, Epithelial Cell-Stromal Cell Interactions, Cell-Cycle Influences on Carcinogenesis
Hengming Ke (50), X-ray Crystallography, Structure and Function of Biologically Important Proteins Such as Phosphodiesterase and Molecular Chaperone System
Brian Kuhlman (72), Computational Protein Design, Protein-Protein Interactions, Structural Biology
Andrew Lee (71), Protein, Structure and Dynamics, NMR Spectroscopy
Patricia F. Maness (68), Mechanisms of Cell Signaling and Adhesion, Axon Guidance and Synaptic Plasticity
William F. Marzluff (69), Control of Gene Activity, Cell-Cycle Regulation in Early Embryos, Control of Expression of Histone mRNA
Gerhard W. Meissner (79), Intracellular Ca2+ Signaling and Regulation of Ion Channels in Striated Muscle
Gary Pielak (99), Protein Structure/Function Using 2-D NMR
Dale Ramsden (108), Repair of Chromosome Breaks, DNA-Protein interactions, Genome Stability
Matthew Redinbo (110), Structural Biology of Proteins and Protein-Nucleic Acid Complexes
Aziz Sancar (105), DNA Repair and Cancer, Structure and Function of DNA Repair Enzymes, Molecular Neurobiology, Reaction Mechanism of Human Blue-Light Photoreceptor
John Sondek (117), Protein Crystallography and Signal Transduction
Brian Strahl (120), Mechanisms of Chromatin-Mediated Gene Transcription
Ronald I. Swansom (123), Molecular Biology of HIV, Resistance to HIV Protease Inhibitors
Cyrus Vaziri, Regulation of DNA Replication and S-Phase Checkpoints
Yue Xiong (140), Molecular Mechanisms of Cell Cycle Control, Tumor Suppression and Development

Associate Professors
Brian Button, Mucus Biophysical Properties, Role of the Pericilliary Layer (PCL), and Mechanisms of Mucociliary Clearance in the Airways
Saskia Neher, Lipase Structure and Function, Membrane Proteins, Molecular Chaperones
Gang Greg Wang, Cancer Epigenetics; Chemical Modifications of Histones
Qi Zhang, Molecular Basis of RNA Function

Assistant Professors
Rick Baker, Cryo-EM, X-ray Crystallography, Biochemistry, Protein Purification
Jill Dowen, Three-Dimensional Genome Architecture and Gene Regulation
Gaorav Gupta, Genome Integrity Pathways and Breast Cancer Initiation, Progression, and Response to Therapy
Guochun Jiang, Epigenetics, Transcription of HIV
Pengda Liu, Cell Signaling; Cancer; mTOR; Akt; Post-Translational Modification; Protein-Protein Interaction
Rob McGinty, Mechanisms of Epigenetic Signaling

Professors Emeriti
Michael Caplow
Stephen G. Chaney
Ann Erickson
Howard Fried
David J. Holbrook Jr.
Barry R. Lentz
John Riordan
Gwendolyn B. Sancar
Arrel Toews
Thomas W. Traut
Richard Wolfenden

(bergmeie@email.unc.edu) or the student services administrator before they register for classes.

Advanced Undergraduate and Graduate-level Courses

BIOC 442. Biochemical Toxicology. 3 Credits.
Required preparation, one course in biochemistry. Biochemical actions of toxins and assessment of cellular damage by biochemical measurements. Three lecture hours per week.

Rules & Requirements
Requisites: Prerequisite, CHEM 430; permission of the instructor for students lacking the prerequisites.
Grading Status: Letter grade.
Same as: ENVR 442, TOXC 442.

BIOC 601. Enzyme Properties, Mechanisms, and Regulation. 3 Credits.
Focuses on enzyme architecture to illustrate how the shapes of enzymes are designed to optimize the catalytic step and become allosterically modified to regulate the rate of catalysis.

Rules & Requirements
Requisites: Prerequisite, CHEM 430; permission of the instructor for students lacking the prerequisite.
Grading Status: Letter grade.

BIOC 603. MiBio Seminar. 2 Credits.
This class is designed to 1) enhance students' ability to present scientific material to their peers in a comprehensive, cohesive manner, 2) familiarize students with scientific concepts and technologies used in multiple disciplines, 3) expose students to cutting edge research, 4) prepare students to gain substantial meaning from seminars and to ask questions, and 5) enhance students' ability to evaluate scientific papers and seminars.

Rules & Requirements
Grading Status: Letter grade.
Same as: BIOL 603, CBPH 603, GNET 603.

BIOC 631. Advanced Molecular Biology I. 3 Credits.
Required preparation for undergraduates, at least one undergraduate course in both biochemistry and genetics. DNA structure, function, and interactions in prokaryotic and eukaryotic systems, including chromosome structure, replication, recombination, repair, and genome fluidity. Three lecture hours a week.

Rules & Requirements
Grading Status: Letter grade.
Same as: GNET 631, BIOL 631, MCRO 631.

BIOC 632. Advanced Molecular Biology II. 3 Credits.
Required preparation for undergraduates, at least one undergraduate course in both biochemistry and genetics. The purpose of this course is to provide historical, basic, and current information about the flow and regulation of genetic information from DNA to RNA in a variety of biological systems. Three lecture hours a week.

Rules & Requirements
Grading Status: Letter grade.
Same as: GNET 632, BIOL 632, MCRO 632.

IMPORTANT: Not all courses are offered every year. Students should check with Director of Graduate Studies Wolfgang Bergmeier.
BIOC 649. Mathematics and Macromolecules. 1.5 Credits.
This course focuses on the application of mathematics to topics important in biophysics, such as thermodynamics and electrostatics. The unit is designed to help students perform more efficiently in BIOC 650, 651, and 652.

Rules & Requirements
Grading Status: Letter grade.

BIOC 650. Macromolecular Thermodynamics and Binding. 1 Credits.
Required preparation, two semesters of physical chemistry or permission of the instructor. Basic molecular models and their use in developing statistical descriptions of macromolecular function. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisite, CHEM 430.
Grading Status: Letter grade.

BIOC 651. Macromolecular Interactions and Forces. 1 Credits.
Required preparation, two semesters of physical chemistry or permission of the instructor. Macromolecules as viewed with modern computational methods. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisite, CHEM 430.
Grading Status: Letter grade.

BIOC 652. Macromolecular Dynamics. 1 Credits.
Required preparation, two semesters of physical chemistry or permission of the instructor. Stability of macromolecules and their complexes with other molecules. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisite, CHEM 430.
Grading Status: Letter grade.

BIOC 655. Case Studies in Structural Molecular Biology. 3 Credits.
Principles of macromolecular structure and function with emphasis on proteins, molecular assemblies, enzyme mechanisms, and ATP enzymology.

Rules & Requirements
Requisites: Prerequisite, CHEM 430; permission of the instructor for students lacking the prerequisite.
Grading Status: Letter grade.

BIOC 660. Introduction to Light Microscopy. 1 Credits.
Fundamentals of optics and light microscope design for the novice student.

Rules & Requirements
Requisites: Prerequisites, BIOC 650, 651, and 652 or permission of the course director.
Grading Status: Letter grade.

BIOC 662. Macromolecular Interactions. 1 Credits.
Theory and practice of biophysical methods used in the study of interactions between macromolecules and their ligands, including surface plasmon resonance, analytical ultracentrifugation, and calorimetry.

Rules & Requirements
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.
Grading Status: Letter grade.

BIOC 663A. Macromolecular NMR. 1 Credits.
Principles and practice of nuclear magnetic resonance spectroscopy; applications to biological macromolecule structure and dynamics in solution. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.
Grading Status: Letter grade.

BIOC 663B. Macromolecular NMR Practice. 1 Credits.
Lab section for BIOC 663A. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisite, BIOC 664; permission of the instructor for students lacking the prerequisite.
Grading Status: Letter grade.

BIOC 664. Macromolecular Spectroscopy. 1 Credits.
Required preparation, two semesters of physical chemistry or permission of the instructor. Principles of UV, IR, Raman, fluorescence, and spin resonance spectroscopies; applications to the study of macromolecules and membranes. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisite, CHEM 430.
Grading Status: Letter grade.

BIOC 665. Advanced NMR Spectroscopy Course. 1 Credits.
Advanced NMR Spectroscopy

Rules & Requirements
Grading Status: Pass/Fail.

BIOC 666. X Ray Crystallography of Macromolecules. 1 Credits.
Principles of protein crystallography, characterization of crystals, theory of diffraction, phasing of macromolecular crystals and structure refinement. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.
Grading Status: Letter grade.

BIOC 667. Macromolecular Crystallographic Methods. 2 Credits.
A combined lecture/laboratory workshop for serious students of protein crystallography. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisite, BIOC 666; permission of the instructor for students lacking the prerequisite.
Grading Status: Letter grade.

BIOC 668. Principles of and Simulation of Macromolecular Dynamics. 1 Credits.
A combined lecture/computer lab treatment of the principles of macromolecular dynamics and structure as approached using the tools of molecular dynamics simulations. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.
Grading Status: Letter grade.
BIOC 670. Biomolecular Informatics. 1 Credits.
A combined lecture/computer lab course introducing the methods and principles of biological data management as this relates to macromolecular sequence analysis. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.

Grading Status: Letter grade.

BIOC 671. Summer Research in Biophysics. 3 Credits.
This class is a 10-week summer course in biophysics.

Rules & Requirements
Grading Status: Letter grade.

BIOC 673. Proteomics, Protein Identification and Characterization by Mass Spectrometry. 1 Credits.
A lecture module that introduces students to mass spectrometry-based proteomics in new biology discovery and precision medicine. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisites, BIOC 650, 651, and 652, or one semester of physical chemistry; permission of the instructor for students lacking the prerequisites.

Grading Status: Letter grade.

BIOC 674. Ion Channels Transporters. 1 Credits.
Ion Channels Transporters

Rules & Requirements
Grading Status: Pass/Fail.

BIOC 675. Fundamentals of Cryo-Electron Microscopy. 1 Credits.
This course will provide a survey of biological applications of cryo-EM, with a particular emphasis on single particle techniques used to determine high-resolution structures of macromolecules. Students will have a basic understanding of cryo-EM theory, the methodology for creating samples and collecting data, and strategies for reconstructing 3D models of macromolecules. Course previously offered as BIOC 708.

Rules & Requirements
Grading Status: Letter grade.

BIOC 678. Electrical Signals from Macromolecular Assemblages. 2 Credits.
An intensive, six-hour per week introduction to the fundamentals of ion channel biophysics, including laboratory sessions to demonstrate principles and methods. Course intended primarily for graduate students.

Rules & Requirements
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisite.

Grading Status: Letter grade.

BIOC 690. Special Topics in Biochemistry. 1-3 Credits.
Special topics course. Content and topics will vary each semester.

Rules & Requirements
Grading Status: Letter grade.

Graduate-level Courses
The following seminar courses are designed for students majoring or minoring in biochemistry who wish to further their knowledge in particular areas. Unless otherwise stated, two semesters of biochemistry are prerequisites for seminar courses. Most of these courses are given in alternate years by interested staff members. Unless otherwise stated, these seminars may not be repeated for credit. Seminar courses provide teaching experience, which is required for a graduate degree in biochemistry and biophysics. In addition, the courses provide experience in giving a critical review of the current literature.

BIOC 700. Origins and Early Evolution of Life. 2 Credits.
Critical reading and discussion in the origins of metabolism, inheritance, and natural selection, and biological complexity.

Rules & Requirements
Grading Status: Letter grade.

BIOC 701. Critical Analysis in Biochemistry. 2 Credits.
Permission of the instructor. Critical analysis of research papers from departmental seminar series, student presentations, meet seminar speakers, learn about departmental research and current techniques.

Rules & Requirements
Grading Status: Letter grade.

BIOC 702. Advanced Topics in Chromatin and Epigenetics. 2 Credits.
Each class covers a unique topic in epigenetics and provide a historical view of the major discoveries that shaped the field with discussions and examinations of current literature.

Rules & Requirements
Grading Status: Letter grade.

BIOC 703. Seminars in Chromatin and Epigenetics. 1 Credits.
Designed to expose students to the broad epigenetic research interests of our large epigenetics focused faculty and expose students to a broad range of epigenetics research techniques.

Rules & Requirements
Grading Status: Letter grade.

BIOC 704. Seminars in Biophysics. 2 Credits.
Permission of the instructor. Students present seminars coordinated with the visiting lecturer series of the Program in Molecular and Cellular Biophysics.

Rules & Requirements
Grading Status: Letter grade.

Same as: BIOL 704.

BIOC 705. Advanced Biophysics Laboratory. 2-4 Credits.
Permission of the program director. Designed to introduce students in the Molecular and Cellular Biophysics Program to research methods. Minor investigative projects are conducted with advice and guidance of the staff. May be repeated for credit.

Rules & Requirements
Grading Status: Letter grade.

BIOC 706. Biochemistry of Human Disease. 3 Credits.
Required preparation, biochemistry. Permission of the instructor. Graduate level, involves lectures, critical readings, and discussions of biochemical aspects of human diseases. Core biochemical principles and cutting edge approaches are considered in the following: amyotrophic lateral sclerosis, Alzheimer’s, cancer, cystic fibrosis, HIV, thrombosis and heart disease, schizophrenia, V(D)J recombination, and neglected diseases.

Rules & Requirements
Grading Status: Letter grade.
BIOC 707. Cellular Metabolism and Human Disease. 2 Credits.
Open to 1st year BBSP or advanced graduate students with background in basic cellular biochemistry. Permission of the instructor. Addresses the role of cellular metabolism in human disease, including the roles and regulation of biochemical pathways. Recent advances will be emphasized. Diseases addressed will include cancer and diabetes.

Rules & Requirements
Grading Status: Letter grade.

BIOC 710. Scientific Communication. 2 Credits.
Scientific communication is designed to help graduate students improve their scientific communication skills through practice and feedback from instructors and peers. The course will cover both written and oral communication. Both topics are covered in recognition of the commonalities in clarity, organization, and delivery shared by successful scientific communication. Course instructors will provide direction on effective organization and delivery of research products, specifically presentations and grant proposals.

Rules & Requirements
Repeat Rules: May be repeated for credit. 4 total credits. 2 total completions.
Grading Status: Letter grade.

BIOC 711. Research Concepts in Biochemistry. 2 Credits.
Master’s candidates in biochemistry and biophysics only. A series of lectures and exercises on formulating a research plan to attack a specific scientific problem, and on presenting the research plan in the form of a grant proposal.

Rules & Requirements
Grading Status: Letter grade.

BIOC 712. Scientific Writing. 3 Credits.
Doctoral candidates in biochemistry and biophysics only. A course of lectures and workshops on the principles of clear scientific exposition with emphasis on the design and preparation of research grants.

Rules & Requirements
Grading Status: Letter grade.

BIOC 715. Scientific Presentation. 1 Credits.
Senior graduate students present original research results as a formal seminar. Feedback on presentation effectiveness and style will be provided by faculty instructors and classmates.

Rules & Requirements
Grading Status: Letter grade.

BIOC 720. The Biochemistry of HIV Replication, Inhibitors, and Drug Resistance. 2 Credits.

Rules & Requirements
Grading Status: Letter grade.

BIOC 721. Cell Regulation by Ubiquitination. 2 Credits.
Required preparation, two semesters of biochemistry. Lecture and literature-based discussion course on ubiquitin-mediated regulation of hormone receptor signaling, trafficking, and degradation.

Rules & Requirements
Grading Status: Letter grade.

BIOC 722A. Cellular and Molecular Neurobiology: Introduction and Electrical Signaling. 2 Credits.
Permission of the department. This course explores the experimental and theoretical function of the nervous system. Typically, the first hour is fundamental material presentation and the second hour may be a presentation led by the students. Topics covered include: cellular diversity in the CNS, gross brain anatomy, human and rodent brain imaging, neuromolecular genetics, behavioral methods, membrane potentials/resistance/capacitance, ion channel structure, electrophysiology and propagation of electrical signals in neurons. Basic undergraduate biology, chemistry, physics and intro calculus is assumed.

Rules & Requirements
Grading Status: Letter grade.
Same as: NBIO 722A, PHCO 722A.

BIOC 722B. Cellular and Molecular Neurobiology: Postsynaptic Mechanisms-Receptors. 2 Credits.
Permission of the department. Consideration of membrane receptor molecules activated by neurotransmitters in the nervous system with emphasis on ligand binding behavior and molecular and functional properties of different classes of receptors. Course meets for four weeks with six lecture hours per week.

Rules & Requirements
Grading Status: Letter grade.
Same as: NBIO 722B, PHCO 722B.

BIOC 725. Signal Transduction. 2 Credits.
Seminardiscussion course on molecular aspects of the receptors, Gproteins, effector proteins, kinases, and phosphatases that mediate hormone, neurotransmitter, growth factor, and sensory signaling.

Rules & Requirements
Grading Status: Letter grade.
Same as: PHCO 725.

BIOC 738. Nanomedicine. 3 Credits.
This course offers an introduction to the interdisciplinary field of nanomedicine for students with a physical, chemical, or biological sciences background. This course will emphasize emerging nanotechnologies and biomedical applications including nanomaterials, nanoeengineering, nanotechnology-based drug delivery systems, nanobased imaging and diagnostic systems, nanotoxicology, and translating nanomedicines into clinical investigation.

Rules & Requirements
Grading Status: Letter grade.
BIOC 740. Contemporary Topics in Cell Signaling: Phosphorylation Control. 1 Credits.
Required preparation, coursework in biochemistry, pharmacology, and/or cell & molecular biology. Permission of the instructor. This graduate-level course is an in-depth analysis of how protein kinases and protein phosphorylation regulates key aspects of cell signaling. This class is one of the "Contemporary Topics in Cell Signaling" modules.

Rules & Requirements
Grading Status: Letter grade.

BIOC 741. Contemporary Topics in Cell Signaling: GTPases. 1 Credits.
Required preparation, coursework in biochemistry, pharmacology, and/or cell & molecular biology. Permission of the instructor. This graduate-level course conveys principles of signal transduction controlled by GTPases and emphasizes in-depth discussion of current literature and unanswered questions. This class is one of the "Contemporary Topics in Cell Signaling" modules.

Rules & Requirements
Grading Status: Letter grade.

BIOC 742. Contemporary Topics in Cell Signaling: Cell Cycle Control. 1 Credits.
Permission of the instructor. Required preparation, coursework in biochemistry and/or cell & molecular biology. This graduate-level course conveys principles of eukaryotic cell proliferation control emphasizing in-depth discussion of current literature and unanswered questions. This class is one of the Contemporary Topics in Cell Signaling modules.

Rules & Requirements
Grading Status: Letter grade.

BIOC 743. Contemporary Topics in Cell Signaling: Signaling Networks. 1 Credits.
Acquire the scientific vocabulary of the signaling network field. Master key concepts from mathematical characterization of signaling circuits. Develop and apply critical analysis skills.

Rules & Requirements
Grading Status: Letter grade.

BIOC 744. Topics on Stem Cells and Development. 2 Credits.
Required preparation, coursework in genetics, cell biology, and molecular biology. Permission of the instructor. Course addresses key issues in developmental biology focused on the role of stem cells and emphasizes in-depth discussion of current literature and unanswered questions. One of the Contemporary Topics in Cell Signaling modules.

Rules & Requirements
Grading Status: Letter grade.

BIOC 745. Intercellular Signaling in Development and Disease. 1 Credits.
This graduate-level course concentrates on up-to-date views of intercellular signal processing, with emphasis on signal transduction mechanisms as they relate to cellular/physiological responses in both normal development and disease. Signaling mechanisms that will be discussed include autocrine, paracrine, juxtacrine signaling and cell-matrix interactions.

Rules & Requirements
Grading Status: Letter grade.

BIOC 802. Seminar in the Phase Problem in X-Ray Crystallography. 2 Credits.
Permission of the instructor. Image formation is treated from a quite general point of view, drawing from Fourier transform methods used in X-ray crystallography. Isomorphous replacement, multiple wavelength anomalous scattering, and Bayesian direct methods are covered. One two-hour seminar a week.

Rules & Requirements
Grading Status: Letter grade.

BIOC 803. Seminar on Cell Signaling. 2 Credits.
Required preparation, two semesters of biochemistry. Signal transduction in embryonic development.

Rules & Requirements
Grading Status: Letter grade.

BIOC 804. Seminar in DNA-Protein Interactions. 2 Credits.
Required preparation, two semesters of biochemistry. Review of current literature on structural, thermodynamic, and kinetic aspects of binding to DNA of proteins involved in replication, regulation, recombination, and repair.

Rules & Requirements
Grading Status: Letter grade.

BIOC 805. Molecular Modeling. 3 Credits.
Introduction to computer-assisted molecular design, techniques, and theory with an emphasis on the practical use of molecular mechanics and quantum mechanics programs.

Rules & Requirements
Requisites: Prerequisites, MATH 231, 232, and CHEM 481.
Grading Status: Letter grade.

BIOC 806. Macromolecular Modeling. 3 Credits.
Introduction to modeling and simulation techniques for biological macromolecules. Two lecture and three to four laboratory hours per week.

Rules & Requirements
Requisites: Prerequisites, MATH 231, 232, and CHEM 430.
Grading Status: Letter grade.

BIOC 807. Seminar in Cellular Responses to DNA Damage. 2 Credits.
Required preparation, graduate-level courses (one each) in molecular biology and biochemistry. A seminar course on the enzymology of DNA repair and damage tolerance and the regulation of genes involved in these processes. Both classic and recent literature are discussed.

Rules & Requirements
Grading Status: Letter grade.

BIOC 808. From Force to Phenotype: How Biological Structures Respond to Physical Force. 2 Credits.
Literature/discussion course on integrating physics with biology, and the challenge of merging structural dynamics with living cell phenotypes. Forces and biological outcomes will be considered through specific examples.

Rules & Requirements
Grading Status: Letter grade.
BIOC 888. Responsible Conduct of Research. 1 Credits.
Classroom-based graduate level course covering critical topics for ethical and responsible conduct of experimental research. There are both classroom lecture, workshop-type discussion components, in addition to assigned outside of class readings. Case studies and hypothetical situations involving the most likely scenarios confronting graduate students will be covered, these topics include: mentor and mentee relationships, publication authorship, collaboration, peer review, conflicts of interest, intellectual property, plagiarism, data acquisition and data processing. Restricted to students in good standing as a graduate student at UNC; In the unlikely event that classroom space is limited, preference will be given to graduate students who have previously received external federal funding sources and may require a refresher course in RCR.

Rules & Requirements
Repeat Rules: May be repeated for credit. 2 total credits. 1 total completions.
Grading Status: Letter grade.
Same as: BCB 888.

BIOC 901. Research in Biochemistry. 3-9 Credits.
Permission of the department.

Rules & Requirements
Grading Status: Letter grade.

BIOC 902. Research in Biochemistry. 1-21 Credits.
Permission of the department. Six or more hours a week throughout both semesters.

Rules & Requirements
Grading Status: Letter grade.

BIOC 992. Master's (Non-Thesis). 3 Credits.

Rules & Requirements
Repeat Rules: May be repeated for credit.

BIOC 994. Doctoral Research and Dissertation. 3 Credits.

Rules & Requirements
Repeat Rules: May be repeated for credit.

Contact Information
Department of Biochemistry and Biophysics
Visit Program Website (http://www.med.unc.edu/biochem/)

Chair
Jean Cook