Degree Requirements
The Ph.D. degree requirements include completion of a suitable set of courses, literature review, prospectus, a first doctoral oral exam, an original research project culminating in a dissertation, and a final oral exam. The general regulations of The Graduate School govern credit hour, residency, and examination requirements.

Courses
All graduate students must pass the following courses, or must have passed their equivalents elsewhere:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSC 710</td>
<td>Materials Science First Year Seminar: Resources for success in your PhD program</td>
<td>1</td>
</tr>
<tr>
<td>MTSC 711</td>
<td>Materials Science First Year Seminar: Developing your plan for success</td>
<td>1</td>
</tr>
<tr>
<td>MTSC 718</td>
<td>Seminar in Materials Science and Engineering</td>
<td>1</td>
</tr>
<tr>
<td>MTSC 780</td>
<td>Advanced Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MTSC 785</td>
<td>Introduction to Scientific Computing for Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Each student also takes additional courses offered by Applied Physical Sciences (APS) or participating departments, as appropriate for his or her area of study.

Literature Review
At the end of the first year (typically early May) students write a literature review. The literature review is intended to prepare students and their advisor for their specific research, the oral defense, which will take place towards the end of the second year, and future publications.

First Doctoral Oral Exam
There are two oral exams. The first oral exam is coordinated with the student’s doctoral advisory committee (DAC). The oral exam will ascertain if the student has acquired the knowledge and skills needed to be successful in research. Two weeks prior to the exam students submit a written prospectus to their DAC. The prospectus describes a detailed research proposal.

The first oral exam includes a 45-minute presentation of the student’s research project aim in the context of the existing literature and research results to date. It is recommended that students also present their possible next steps (future work!) and elaborate on what is needed in order to be successful in their research. For example, it could be that the research would benefit from an internship at another university or industrial partner, or from collaborative research at one of the national labs. Committee members review proposals and research plans during the oral exam, ask questions, and give suggestions and feedback.

Dissertation and Final Oral Exam
The final oral exam is coordinated with the student’s DAC and is a defense of the research thesis.

Professors
Theo J. Dingemans (APS), High-Performance Polymers and (Nano)composites
Greg Forest (Mathematics), Flow and Structure of Complex Polymeric Fluids
Jinsong Huang (APS), Perovskite Solar Cells, Photodetectors, X-ray Imaging, Radiation Detectors, Electronic Devices
Rene Lopez (Physics and Astronomy, APS), Optical Materials, Photonic Structures, Photovoltaics
Peter Mucha (Mathematics), Complex Systems, Networks, Complex Fluids
Richard Superfine (APS), Biological Physics, Soft Matter, Biomedical Device Technologies
Sean Washburn (Physics and Astronomy, APS), Quantum Transport, Mechanical and Electrical Response of Nanostructures

Associate Professor
Ronit Freeman (APS), Development of Novel Designer Materials Using Self-Assembling Biological Components

Teaching Associate Professor
Richard Goldberg (APS), Assistive Technology, Rehabilitation Engineering, Engineering Education

Professor of the Practice
Glenn Walters (APS), Instrumentation for Innovation, BeAM Design Center, Engineering Education

Assistant Professors
Wubin Bai (APS), Bioelectronics, Soft Materials, Advanced Manufacturing, Microsystems, Electronic Materials, Photonic Materials, and Biomaterials
Daphne Klotsa (APS), Computational Soft and Active Matter
Ehssan Nazockdast (APS), Modeling/Simulation of Biophysical Phenomena
Nico Pegard (APS), Computational Optics, Imaging Systems, Optical Instrumentation and Digital Interfaces for Systems Biology and Neuroscience
Zijie Yan (APS), Optical Trapping and Manipulation, Holography, Microfluidics, Electronic and Photonics Nanomaterials

Affiliated Faculty
James Cahoon (Chemistry), Nanoparticle Synthesis and Characterization
Orlando Coronell (Environmental Sciences and Engineering), Wet Chemistry, Polymer Synthesis, Membrane Systems
J. Michael Ramsey (Chemistry), Analytical Chemistry, Microfabricated Chemical Instrumentation, Microfluidics, Nanofluids
Edward T. Samulski (Chemistry – APS), Liquid Crystals and Liquid Crystal Polymers
Scott Warren (Chemistry – APS), Supramolecular and Solid-State Chemistry for Materials Design
Wei You (Chemistry), Organic and Polymer Synthesis, Organic Solar Cells, Molecular Electronics, Organic Spintronics

APPL
Advanced Undergraduate and Graduate-level Courses
APPL 405. Convergent Engineering: Team-Science Approaches to Discovery and Innovation. 3 Credits.
Students will participate in activities, group discussion, and problem-solving coaching to understand how chemistry, physics, materials science, and biology are applied to engineering. Topics are introduced through discussing relevant scientific literature, and guest lecturers and faculty discuss expertise in fields like mathematical modeling, mechanical engineering, or circuit design. Guest lecturers can provide new perspective on the problems so students gain an interdisciplinary view of the subject.
Grading status: Letter grade.

APPL 412. Turning Your Entrepreneurial Ideas Into Reality. 3 Credits.
Students will work in groups on a semester project to turn their entrepreneurial ideas into reality.
Requisites: Prerequisite, APPL 110; permission of the instructor for students lacking the prerequisite.
Gen Ed: EE- Field Work.
Grading status: Letter grade.

APPL 420. Introduction to Polymers. 3 Credits.
Chemical structure and nomenclature of macromolecules, synthesis of polymers, characteristic polymer properties.
Requisites: Prerequisite, CHEM 261 or 261H; pre- or corequisites, CHEM 262 or 262H, and 262L or 263L.
Grading status: Letter grade
Same as: CHEM 420.

APPL 421. Synthesis of Polymers. 3 Credits.
Synthesis and reactions of polymers; various polymerization techniques.
Requisites: Prerequisites, CHEM 251 and 262 or 262H.
Grading status: Letter grade
Same as: CHEM 421.

APPL 422. Physical Chemistry of Polymers. 3 Credits.
Polymerization and characterization of macromolecules in solution.
Requisites: Prerequisites, CHEM 420 and 481.
Grading status: Letter grade
Same as: CHEM 422.

APPL 423. Intermediate Polymer Chemistry. 3 Credits.
Polymer dynamics, networks and gels.
Requisites: Prerequisite, CHEM 422.
Grading status: Letter grade
Same as: CHEM 423.

APPL 430. Optical Instrumentation for Scientists and Engineers. 3 Credits.
This is an introduction to methods of automatic computation of specific relevance to biomedical problems. Sampling theory, analog-to-digital conversion, and digital filtering will be explored in depth. Previously offered as APPL 460.
Requisites: Prerequisite, MATH 383.
Grading status: Letter grade.
APPL 435. Nanophotonics. 3 Credits.
This course introduces the principles of nanophotonics - an emerging frontier at the nexus of nanotechnology and photonics that deals with light-matter interactions at the nanometer scale. The course will cover the theoretical foundations of nanoscale materials and optics, fabrication and characterization of optical nanostructures, plasmonics, nanomanipulation by optical tweezers, electrodynamic simulations, nanoscale light emitters, and applications of nanophotonics.
Requisites: Prerequisites, PHYS 117 and CHEM 251.
Grading status: Letter grade.

APPL 462. Engineering Materials: Properties, Selection and Design. 3 Credits.
This course will cover both fundamental and applied aspects of modern materials science. We will discuss how to select materials based on their properties and how they can be processed into products that you encounter in everyday life. A strong focus will be on the relationship between processing, structure (development), and properties of solid materials, such as metals, ceramics, and polymers.
Requisites: Prerequisite, CHEM 102, or PHYS 116 or PHYS 118.
Grading status: Letter grade.

APPL 465. Sponge Bob Square Pants and Other Soft Materials. 3 Credits.
What kind of material is Sponge Bob made of? What about the slime of his pet snail, Gary? We are taught that there are three states of matter: solid, gas, and liquid. However, in our daily lives we encounter materials that challenge this simple description such as foams, pastes, gels, soap, and rubber. These are Soft Materials and in this course we will learn about their special properties.
Grading status: Letter grade.

APPL 470. Fundamentals of Materials Science. 3 Credits.
Crystal geometry, diffusion in solids, mechanical properties of solids, electrical conduction in solids, thermal properties of materials, phase equilibria.
Requisites: Prerequisite, CHEM 482 or PHYS 128. Pre- or corequisite, PHYS 441.
Grading status: Letter grade
Same as: CHEM 470.

APPL 472. Chemistry and Physics of Electronic Materials Processing. 3 Credits.
Permission of the instructor. A survey of materials processing and characterization used in fabricating microelectronic devices. Crystal growth, thin film deposition and etching, and microlithography.
Requisites: Prerequisite, CHEM 482 or PHYS 117 or 119.
Grading status: Letter grade
Same as: PHYS 472, CHEM 472.

APPL 473. Chemistry and Physics of Surfaces. 3 Credits.
The structural and energetic nature of surface states and sites, experimental surface measurements, reactions on surfaces including bonding to surfaces and adsorption, interfaces.
Requisites: Prerequisite, CHEM 470.
Grading status: Letter grade
Same as: CHEM 473.

APPL 490. Special Topics. 1-3 Credits.
Topics vary from semester to semester.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 9 total credits. 9 total completions.
Grading status: Letter grade.

APPL 491L. Materials Laboratory I. 2 Credits.
Structure determination and measurement of the optical, electrical, and magnetic properties of solids.
Requisites: Prerequisites, APPL 470 and PHYS 351.
Grading status: Letter grade
Same as: PHYS 491L.

APPL 492L. Materials Laboratory II. 2 Credits.
Continuation of PHYS 491L with emphasis on low- and high-temperature behavior, the physical and chemical behavior of lattice imperfections and amorphous materials, and the nature of radiation damage.
Requisites: Prerequisite, APPL 491L or PHYS 491L.
Grading status: Letter grade
Same as: PHYS 492L.

APPL 493. Internship in Applied Physical Sciences. 3 Credits.
An ideal internship provides students with practical experience in an organization outside of UNC, doing work that is relevant to their UNC education. The internship should develop and enhance the students’ professional skill sets and involve experiences that allow students to have responsibility for results that are of value to the organization.
Gen Ed: EE- Academic Internship.
Grading status: Letter grade.

APPL 495. Mentored Research in Applied Physical Sciences. 3 Credits.
Students undertake independent research with a faculty mentor. In order to register for this class, students must submit a learning contract and research proposal for approval. At the end of the semester, students submit a final report that describes their research. Students are encouraged to present their work either internally at UNC or externally at a conference or symposium.
Gen Ed: EE- Mentored Research.
Grading status: Letter grade.

APPL 520L. Polymer Chemistry Laboratory. 2 Credits.
Various polymerization techniques and characterization methods. One four-hour laboratory each week.
Requisites: Pre- or corequisite, CHEM 420 or 421 or 425.
Gen Ed: EE- Mentored Research.
Grading status: Letter grade
Same as: CHEM 520L.

APPL 573. Introductory Solid State Physics. 3 Credits.
Crystal symmetry, types of crystalline solids; electron and mechanical waves in crystals, electrical and magnetic properties of solids, semiconductors; low temperature phenomena; imperfections in nearly perfect crystals.
Requisites: Prerequisite, PHYS 421; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade
Same as: PHYS 573.

APPL 590. Special Topics in Applied Physical Sciences. 3 Credits.
Advanced specialty topics in applied physical sciences for undergraduates and graduates.
Repeat rules: May be repeated for credit. 12 total credits. 4 total completions.
Grading status: Letter grade.

APPL 690. Special Topics in Applied Physical Sciences. 3 Credits.
Advanced specialty topics in applied physical sciences for undergraduate and graduates.
Repeat rules: May be repeated for credit. 12 total credits. 4 total completions.
Grading status: Letter grade.
MTSC

Advanced Undergraduate and Graduate-level Courses

MTSC 615. Structure of Solids. 3 Credits.
Crystallography, reciprocal lattices, Bloch waves, band structure, electronic wave functions, phonons, thermal expansion. Superlattice structures, including liquid crystals. Overview of properties of ceramic, amorphous, polymeric, and composite materials.
Grading status: Letter grade.

Graduate-level Courses

MTSC 710. Materials Science First Year Seminar: Resources for success in your PhD program. 1 Credit.
The Materials Science graduate student seminar series is a 1-credit course required for first year MTSC students. It is designed to expose students to APS research and key resources and skills outside of course work that they will need to be successful in the PhD program and beyond. Sessions will include research talks by APS faculty, workshops by invited speakers internal and external to UNC, and presentations by second year PhD students.
Grading status: Letter grade.

MTSC 711. Materials Science First Year Seminar: Developing your plan for success. 1 Credit.
Students gain knowledge and learn key skill-sets outside of their technical course work needed for success in their PhD program and beyond. MTSC 711 follows on the topics learned in MTSC 710 to broaden the professional development of materials science PhD students.
Grading status: Letter grade.

MTSC 715. Visualization in the Sciences. 3 Credits.
Computational visualization applied in the natural sciences. For both computer science and natural science students. Available techniques and their characteristics, based on human perception, using software visualization toolkits. Project course.
Grading status: Letter grade
Same as: COMP 715, PHYS 715.

MTSC 718. Seminar in Materials Science and Engineering. 1 Credit.
The Seminar in Materials Science and Engineering is a required 1-credit course for all Materials Science students in fall and spring semesters of years 2-5 of their doctoral program. The course tracks attendance at the required APS departmental seminars. Attending departmental seminars is an important component of training for MTSC doctoral students.
Engaging in the seminars will help students gain a working knowledge of a variety of research areas important to their doctoral research.
Grading status: Letter grade.

MTSC 720. Materials Fabrication. 3 Credits.
Permission of the department. Introduction to materials fabrication and characterization techniques. Includes single crystal growth, thin film deposition, synthesis of quantum dots and nanotubes/nanowires, dielectric and electron emissive materials, nanocomposites, bioceramics, and energy storage materials.
Grading status: Letter grade.

MTSC 730. Statistical Thermodynamics. 3 Credits.
Grading status: Letter grade.

MTSC 735. Techniques in Materials Science. 3 Credits.
Permission of the department. Lecture and laboratory in materials analysis techniques, including microscopy, X-ray diffraction and fluorescence, magnetic resonance, thermal analysis, XPS, channeling and RBS, mechanical properties, optical spectroscopy.
Repeat rules: May be repeated for credit.
Grading status: Letter grade.

MTSC 740. Advanced Biomaterials. 3 Credits.
Medical or dental implants or explants are highlighted from textbooks, scientific literature, and personal accounts.
Requisites: Prerequisite, BMME 510; Permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade
Same as: BMME 740.

MTSC 745. Chemistry of Biomaterials. 3 Credits.
Focuses on the chemistry and chemical structure-function relationships of soft synthetic biological materials. Topics include chemistry of proteins, peptides, nucleic acids, polysaccharides and lipids, and their incorporation into biomaterials and biosensors; enzymatic reactions; chemical modification of organic and inorganic surfaces using self-assembled monolayer chemistries, bioconjugation chemistries, synthesis of nanoparticles and their application as sensors, application of biological materials for logic operations, fundamentals of supramolecular chemistry.
Grading status: Letter grade.

MTSC 750. Kinetics, Diffusion, and Phase Transitions of Materials. 3 Credits.
Grading status: Letter grade.

MTSC 755. Polymer Processing and Properties. 3 Credits.
How does one process ultrahigh molecular weight polyethylene into ultra-strong fibers or how would you design a polymer shape-memory actuator? Polymer chemistry is important but equally important is the way how polymers are processed. In this course we will discuss the relationship between polymer chemistry, processing and the final, after processing, properties. (We will discuss different processing methods that are currently in use, and which parameters play a role in controlling the final properties.
Grading status: Letter grade.

MTSC 760. Complex Fluids: Theory and Applications. 3 Credits.
Complex fluids are materials we encounter everyday such as pastes, gels, foams, blood, and tissue, yet ones that cannot be categorized within the traditional three states of matter (solid/gas/liquid). In this course, we introduce the main physical and mathematical concepts of the continuum mechanics of complex fluids and follow with microscopic approaches. The course is designed to focus on both theory and applications with hands-on activities and examples.
Grading status: Letter grade.
MTSC 765. Electronic Materials and Devices - Organic and Inorganic. 3 Credits.
The course introduces the electronic and optical processes in organic molecules and polymers that govern the behavior of practical organic optoelectronic devices. The course begins with an overview of fundamental science of electronic materials and devices. We then discuss their optoelectronic properties of organic molecules, including topics from photophysics, charge transport and injection. Emphasis will be equally placed on the use of both inorganic and organic electronic materials in organic electronic devices.
Grading status: Letter grade.

MTSC 780. Advanced Materials Science. 3 Credits.
This course covers the physical fundamentals of material science with an in-depth discussion of structure formation in soft and hard materials and how structure determines material mechanical, electrical, thermal, and optical properties. Topics include amorphous and crystal structures, defects, dislocation theory, thermodynamics and phase diagrams, diffusion, interfaces and microstructures, solidification, and theory of phase transformation. Special emphasis will be on the structure-property relationships of (bio)polymers, (nano)composites, and their structure property relationships.
Grading status: Letter grade
Same as: BMME 780, CHEM 780, PHYS 780.

MTSC 785. Introduction to Scientific Computing for Materials. 3 Credits.
An introduction to scientific computing key concepts and applying these concepts to solve problems, focusing on materials science and engineering. An overview of the mathematics basis of each numerical technique is followed with computer programming during and outside of class to apply those techniques. The course will require a final project to understand application software commonly used in materials science and engineering, including molecular dynamics (MD) software and in continuum modeling software.
Grading status: Letter grade.

MTSC 810. Device Physics and Electronic Properties of Solids. 3 Credits.
Survey of crystal structure, bandstructure, transport. Overview of FETs, heterostructures, light emission, dissipation, noise, integrated circuits, solar cells, and ceramics. Emphasis on physical sources of device behavior.
Requisites: Prerequisites, APPL 470 or PHYS 573, MTSC 615, and 730; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

MTSC 820. Optical Properties of Solids. 3 Credits.
Reflection, waveguides, nonlinear optics, optical switching, photorefraction, optical storage. Optical coupling to electronic states, device applications, optical computing.
Requisites: Prerequisites, APPL 470 or PHYS 573, and PHYS 415; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

MTSC 830. Ion-Solid Interactions. 3 Credits.
Interatomic potentials, range distribution, radiation damage, annealing, secondary defects, analytical techniques, silicon-based devices, implantation in compound semiconductors, and buried layer synthesis. Ion implantation in metals, ceramics, polymers, and biomaterials.
Requisites: Prerequisite, APPL 470 or PHYS 573; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

MTSC 840. New Technologies and Device Architecture. 3 Credits.
Requisites: Prerequisites, APPL 470 or PHYS 573, MTSC 615, and 730; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

MTSC 871. Solid State Physics. 3 Credits.
Equivalent experience for students lacking the prerequisite. Topics considered include those of PHYS 573, but at a more advanced level, and in addition a detailed discussion of the interaction of waves (electromagnetic, elastic, and electron waves) with periodic structures, e.g., Xray diffraction, phonons, band theory of metals and semiconductors.
Requisites: Prerequisite, PHYS 421.
Grading status: Letter grade
Same as: PHYS 871.

MTSC 872. Solid State Physics II. 3 Credits.
Topics considered include quantum and thermal fluctuations, and thermodynamics of phase transitions in a broad variety of condensed matter systems, their kinetic theory and hydrodynamics, novel materials (two-dimensional electron gas, graphene, topological insulators and superconductors, Dirac/Weyl/nodal line semimetals), condensed matter applications of modern field-theoretical methods (path integral, renormalization group, holography).
Requisites: Prerequisite, PHYS 871.
Grading status: Letter grade
Same as: PHYS 872.

MTSC 891. Special Topics in Material Science. 1-3 Credits.
Permission of the department. Current topics in materials science, including electronic and optical materials, polymers, and biomaterials.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics.
Grading status: Letter grade.

MTSC 892. Special Topics in Material Sciences. 3 Credits.
Advanced specialty topics in material sciences for graduate students.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.

MTSC 893. Special Topics in Material Sciences. 3 Credits.
Advanced specialty topics in material sciences for graduate students.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.

MTSC 894. Special Topics in Material Sciences. 3 Credits.
Advanced specialty topics in material sciences for graduate students.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.

MTSC 895. Special Topics in Material Sciences. 3 Credits.
Advanced specialty topics in material sciences for graduate students.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.
MTSC 896. Special Topics in Material Sciences. 3 Credits.
Advanced specialty topics in material sciences for graduates.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 1 total completions.
Grading status: Letter grade.

MTSC 897. Special Topics in Material Sciences. 3 Credits.
Advanced specialty topics in material sciences for graduate students.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.

MTSC 898. Special Topics in Material Sciences. 3 Credits.
Advanced specialty topics in material sciences for graduate students.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.

MTSC 899. Special Topics in Material Sciences. 3 Credits.
Advanced specialty topics in material sciences for graduate students.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.

MTSC 992. Master's (Non-Thesis). 3 Credits.

MTSC 993. Master's Research and Thesis. 3 Credits.
Permission of the department.
Repeat rules: May be repeated for credit.

MTSC 994. Doctoral Research and Dissertation. 3 Credits.
Permission of the department.
Repeat rules: May be repeated for credit.