DIVISION OF RADIOLOGIC SCIENCE

Contact Information
Division of Radiologic Science
www.med.unc.edu/ahs/radisci
Suite 3050 Bondurant Hall, CB# 7130
(919) 966-5147
Joy Renner, Director
jrenner@med.unc.edu

Introduction
The School of Medicine’s radiologic science program is designed to prepare individuals for professional practice and associated responsibilities in the health specialty of medical imaging. Graduates provide patient assessment and care required for medical imaging procedures in addition to insuring that the highest quality imaging study is completed with the patient’s radiation dose as a factor. In addition to diagnostic radiology, students may select other imaging modalities and practice areas for additional competence and training. These other areas include pediatrics, mammography, computed tomography, magnetic resonance imaging, vascular interventional radiology, and cardiac catheterization laboratory. The curriculum includes course discussions and projects on global health imaging issues and the potential for international experiences in medical imaging departments and programs abroad.

Admission to the Program
Following completion of the first two years’ work in the University’s General College, students may be admitted to the professional major offered by the Department of Allied Health Sciences of the UNC School of Medicine. Students enrolled at other colleges and universities who are interested in transferring to the Chapel Hill campus following their sophomore year should contact the Office of Undergraduate Admissions and the Division of Radiologic Science early in their college career to assure proper planning and transferability of courses. Students are encouraged to begin the application process early in the fall semester preceding the year of intended enrollment. The program begins in Summer Session II each year. Transfer applications should be received in the Office of Undergraduate Admissions by the designated University deadline, which is usually early January.

Since enrollment in the major is limited, completion of the student’s course of study in the General College does not guarantee a position in the professional class. Students should contact the Division of Radiologic Science in the fall semester preceding anticipated enrollment to receive admissions information. Student selections are made on a competitive basis with consideration given to academic achievement, character, both written and oral communication skills, and demonstrated interest in medical imaging as a professional career.

Students are subject to the requirements in place when they are admitted to this program; consequently, the requirements described in this catalog particularly apply to students admitted during the 2017–2018 academic year.

Advising
First-year and sophomore students interested in the B.S. degree with a major in radiologic science have a primary academic advisor in Steele Building during the first two years of the degree program. Students are strongly encouraged to meet regularly with their advisor and review their Tar Heel Tracker each semester. The director of the Division of Radiologic Science is available to meet with current and prospective majors by appointment (see contact information above). The division’s faculty provides academic advising for students who are enrolled in the program. Further information on the curriculum may be obtained from radiologic science Web site (http://www.med.unc.edu/ahs/radisci).

Facilities
The program has a state-of-the-art laboratory with digital imaging capabilities in the Burnett-Womack Building adjacent to the offices and classroom building. The laboratory includes radiography and fluoroscopic equipment with digital imaging plate readers and software.

Graduate School and Career Opportunities
The Division of Radiologic Science bachelor of science degree program provides a basis for further study. Additional clinical specializations are available in diagnostic medical sonography (ultrasound), nuclear medicine, and radiation therapy. Graduates may elect graduate studies in health physics, business and education, management, public health, and other health professions. The division offers a master’s in radiologic science degree program for those students seeking advanced clinical practice as a radiologist assistant.

The clinical practice of medical imaging (radiologic technology) may include one or more of the specialty areas listed here, depending on professional preference and the type, size, and mission of the health facility where the technologist is employed: general radiography (such as orthopedics or pediatrics), vascular imaging, cardiac catheterization, computed tomography, and magnetic resonance imaging. Responsibilities and salaries vary according to the area and scope of practice.

Employment opportunities available in a variety of settings, in both rural and urban areas, include

1. more generalized practice in medium to small hospitals;
2. specialized clinical practice in a large hospital;
3. clinics and free-standing imaging centers, which may offer both special and general practice opportunities; or
4. clinical practice coupled with expanded responsibilities in quality control, service education, and supervision, particularly in a large hospital.

Major
• Radiologic Science Major, B.S. (http://catalog.unc.edu/undergraduate/programs-study/radiologic-science-major-bs)

Professor
Jordan B. Renner.

Associate Professor
Joy J. Renner.
Assistant Professors
Kenya Haugen, Lauren Noble.

Instructor
Melissa Culp.

Professors Emeriti
Charles B. Burns, Janice C. Keene, Robert L. Thorpe.

RADI—Radiologic Science
Advanced Undergraduate and Graduate-level

RADI 432. Concepts and Perspectives in Radiologic Science. 1 Credit.
This overview of radiologic science encompasses patient care, imaging modalities for diagnosis and treatment, radiation protection, health care trends, and information management systems. Pass/Fail course.
Grading status: Letter grade.

RADI 442. Introduction to Radiologic Science. 3 Credits.
Majors only. Lectures, demonstrations, and laboratory exercises are combined to introduce topics including patient assessment, image characteristics, radiation protection, positioning skills, medical terminology, and the role of imaging sciences in health care.
Grading status: Letter grade.

RADI 461. Radiography I. 4 Credits.
Prepares students for standard radiography of upper extremities, lower extremities, axial skeleton, bony thorax, chest, abdomen, and the basic skull, considering pathologies and gross, radiographic, and cross-sectional anatomy. Three lecture hours and two laboratory hours.
Requisites: Prerequisites, AHSC 440 and RADI 442.
Grading status: Letter grade.

RADI 462. Radiographic Imaging I. 4 Credits.
An overview of radiographic imaging methods examining the imaging process as a sequence of events from x ray production through hard copy processing. The imaging equipment is discussed in terms of function, influence on the image, the impact of alteration on image characteristics, and compensation techniques for changes in the sequence. Three lecture hours and two laboratory hours.
Requisites: Prerequisites, AHSC 440 and RADI 442.
Grading status: Letter grade.

RADI 463. Clinical Education I. 4 Credits.
A clinical course focusing on the application and evaluation of radiography in the hospital setting. With supervision, the student develops clinical skills through observation and participation in radiographic procedures. Twenty practicum hours.
Requisites: Prerequisites, AHSC 440 and RADI 442.
Grading status: Letter grade.

RADI 465. FOUNDATIONS IN RAD THER. 4 Credits.

RADI 471. Radiography II. 3 Credits.
The course content prepares students for standard radiography of cranial bones, facial bones, and special cranial projections. Contrast studies include gastrointestinal, urinary, biliary, cardiovascular, and other special procedures. The course includes pathologies, and gross, radiographic, and cross-sectional anatomy. Two lecture hours and two laboratory hours.
Requisites: Prerequisite, RADI 461.
Grading status: Letter grade.

RADI 472. Radiographic Imaging II. 4 Credits.
A detailed study of specific elements of the radiographic process, with an emphasis on the interrelationships of the radiographic parameters, refinement of image analysis and problem-solving skills, and quality control testing for evaluating the performance of the radiographic equipment and accessories. Three lecture hours and two laboratory hours.
Requisites: Prerequisite, RADI 462.
Grading status: Letter grade.

RADI 473. Clinical Education II. 4 Credits.
A continuation of RADI 463 with emphasis on the application and evaluation of more complex radiographic studies. Twenty practicum hours.
Requisites: Prerequisite, RADI 463.
Grading status: Letter grade.

RADI 574. Clinical Education III. 3 Credits.
Under general supervision, the student will function at an increased level of responsibility in general diagnostic radiography in a variety of clinical settings outside of the university setting.
Requisites: Prerequisite, RADI 473.
Grading status: Letter grade.

RADI 575. Clinical Education IV. 5 Credits.
Under general supervision, the student will function at an increased level of responsibility in radiography in clinical settings outside of the university setting. The course includes a comprehensive review examination and case studies.
Requisites: Prerequisite, RADI 574.
Grading status: Letter grade.

RADI 583. Clinical Education V. 4 Credits.
A clinical course utilizing contract learning to provide students an opportunity to gain additional competency in specialized areas of radiology. Twenty-four education and independent study hours.
Requisites: Prerequisites, RADI 574 and 575.
Grading status: Letter grade.

RADI 584. Clinical Education VI. 6 Credits.
This course is a continuation of RADI 583 using learning contracts to allow students to explore and gain additional expertise in various areas of radiology. Twenty-four clinical hours.
Requisites: Prerequisite, RADI 583.
Grading status: Letter grade.

RADI 585. Radiologic Health Physics. 3 Credits.
A course in the physics of diagnostic radiology, including radiation effects on tissue, radiation detection and measurement, protection methods and techniques, and environmental radiation issues. Three lecture hours.
Requisites: Prerequisite, RADI 472; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

RADI 586. Research in Radiologic Science I. 1 Credit.
Majors only. The major part of the course is devoted to an investigative project on a discipline-related topic of student interest. Select issues affecting professional affairs of radiologic technologists are also included.
Grading status: Letter grade.
RADI 591. Practicum in Radiologic Science. 4 Credits.
This course offers an elective clinical experience in an area of student interest.
Requisites: Prerequisite, RADI 584.
Grading status: Letter grade.

RADI 594. Professional Communications and Interactions. 3 Credits.
Majors only. This course provides for a brief cognitive and skills approach to communication skills, the teaching/learning process, and methods and materials of instruction and delivery. Three lecture/discussion hours per week.
Grading status: Letter grade.

RADI 597. Leadership in Radiologic Science. 3 Credits.
Majors only. In this course students will analyze the theoretical literature on leadership and apply that knowledge in the analysis of various radiology environment situations. Three lecture hours.
Grading status: Letter grade.

RADI 597. Pathophysiology. 3 Credits.
Majors only. This course will enhance and integrate the student’s knowledge of anatomy, physiology, and pathology related to all human body systems. Emphasis will be placed on understanding how structure, function, and disease are interrelated. Three lecture hours per week.
Grading status: Letter grade.

RADI 660. Instrument and Imaging Methods. 4 Credits.
RADI 670. Integrated Principles of Radiographic Analysis. 4 Credits.
This course involves students in situational problem solving and radiographic analysis. Integration of concepts and knowledge of anatomy, pathology, procedures, patient care, and imaging principles are emphasized. Four lecture hours.
Requisites: Prerequisite, RADI 660.
Grading status: Letter grade.

RADI 672. Radiographic Imaging II. 4 Credits.
A detailed study of specific elements of the radiographic process, with an emphasis on the interrelationships of the radiographic parameters, refinement of image analysis and problem-solving skills, and quality. Three lectures hours and two laboratory hours.
Grading status: Letter grade.

RADI 681. Trends in Medical Imaging Practices Issues in the Radiology Practice Environment. 3 Credits.
Majors only. The course covers issues related to health care systems, medicolegal ethics, and practice and quality assurance. Three lecture hours per week.
Grading status: Letter grade.

RADI 686. Research in Radiologic Science II. 2 Credits.
Majors only. Students complete a research project involving a major clinical or policy issue in radiologic science. This course is an expansion of the fall semester research culminating in both a paper and presentation.
Grading status: Letter grade.

RADI 694. Clinical Decisions in Radiology. 3 Credits.
Majors only. This course involves the pharmacology of common radiology medications and advanced patient assessment techniques. With the additional knowledge and skills, students can make informed decisions regarding patient care. Three lecture hours.
Grading status: Letter grade.