DEPARTMENT OF CHEMISTRY

Contact Information

Department of Chemistry
http://www.chem.unc.edu
Caudill and Kenan Laboratories, CB# 3290
(919) 843-7100

Jeffrey S. Johnson, Chair

Andrew Moran, Director of Undergraduate Studies
ammoran@email.unc.edu

Donnyell Batts and Jill Fallin, Chemistry Student Services Coordinators
chemus@unc.edu

Introduction

Chemistry is the scientific study of the composition and properties of matter and the investigation of the laws that govern them. Classically, chemistry is divided into several subdisciplines. Organic chemistry deals primarily with carbon compounds; inorganic chemistry, with compounds of the other elements. Physical chemistry seeks to describe relationships between the chemical and physical properties of all substances. Analytical chemistry studies the analysis of the chemical composition of all substances. Biological chemistry pursues the chemistry of living organisms. At the borders of these subdisciplines are many hybrid areas of study: physical organic, organometallic, bioinorganic, and others. At the interface of chemistry with other sciences, several active fields are fueled by insights gained from two ways of thinking about things: for example, chemical physics, chemical biology, organic geochemistry, and the extensive chemical problems in biotechnology, nanotechnology, material sciences, and molecular medicine. In all of these areas the chemist’s approach may be theoretical, experimental, or both.

All chemists have a common core of knowledge, learned through a highly structured sequence of undergraduate courses in which the content is divided into the classical subdisciplines. Toward the end of students’ progress through their four years of undergraduate study, they may choose to concentrate in one or more areas of chemistry through the courses selected to fulfill the chemistry elective requirements and through undergraduate research.

Advising

Faculty advisors are available in the Department of Chemistry for both walk-in meetings and scheduled advising appointments. The departmental advisors assist students with a variety of areas: course planning for the chemistry major, career/graduate school planning, study abroad opportunities, undergraduate research opportunities, and how to deal with academic difficulties. Chemistry majors are required to meet with a departmental advisor by appointment prior to registering for any semester beyond the fourth term in residence. The faculty advisors also schedule many events for the majors.

Graduate School and Career Opportunities

An undergraduate degree tailored according to the student’s interests can open doors to graduate programs in many academic disciplines: chemistry, environmental science, materials science, polymer science, chemical engineering, geochemistry, chemical physics, and several disciplines at the interface between biology and chemistry. A technically oriented administrator in the chemical industry might choose to obtain a master’s degree in business administration. More than 100 schools in the United States offer graduate programs in chemistry and related areas, and the usual practice is to complete a graduate degree at an institution different from the undergraduate institution. It is necessary to specialize in graduate study, either within one of the branches previously mentioned or at the interface between two of them. A student admitted to a graduate program in chemistry in the United States is usually offered a teaching assistantship or fellowship.

Chemists have a wide choice of academic, governmental, or industrial positions. By far the greatest percentage accept industrial positions, mostly in chemical manufacturing or the petroleum, food, and pharmaceutical industries, where they may be developing new products to benefit humanity or assessing the level of risk in the processes for some proposed production methods, for example. Most government chemists are employed in agriculture, health, energy, environmental, and defense-related areas. In the academic field, with such a broad spectrum of colleges and universities in this country, chemists can set career goals with varying levels of emphasis on training students in research and teaching in the classroom and instructional laboratory.

Majors

• Chemistry Major, B.A. (http://catalog.unc.edu/undergraduate/programs-study/chemistry-major-ba)
• Chemistry Major, B.S. (http://catalog.unc.edu/undergraduate/programs-study/chemistry-major-bs)
• Chemistry Major, B.S.–Biochemistry Track (http://catalog.unc.edu/undergraduate/programs-study/chemistry-major-bs-biochemistry-track)
• Chemistry Major, B.S.–Polymer Track (http://catalog.unc.edu/undergraduate/programs-study/chemistry-major-bs-polymer-track)

Minor

• Chemistry Minor (http://catalog.unc.edu/undergraduate/programs-study/chemistry-minor)

Graduate Programs

• M.A. in Chemistry (http://catalog.unc.edu/graduate/schools-departments/chemistry)
• M.S. in Chemistry (http://catalog.unc.edu/graduate/schools-departments/chemistry)
• Ph.D. in Chemistry (http://catalog.unc.edu/graduate/schools-departments/chemistry)

Professors

Associate Professors

Assistant Professors
Joanna M. Atkin, Eric M. Brustad, Jillian L. Dempsey, Leslie M. Hicks, Bo Li, Matthew R. Lockett, Simon J. Meek, Alexander J.M. Miller, Scott C. Warren.

Research Assistant Professors
Todd L. Austell, Brian P. Hogan, Domenic J. Tiani.

Lecturers
Carribeth L. Bliem, Thomas C. Freeman, Carolyn J. Morse, Cheryl Moy, Danielle Zurcher.

Course Sequencing
Careful attention should be given to prerequisites and course timing when planning a long-term schedule. A C- or better grade in CHEM 101 is required to continue into CHEM 102/102L. CHEM 102 is a prerequisite for CHEM 241/241L, CHEM 251, and CHEM 261. A C- or better grade in CHEM 102 is required to continue into ANY higher-level chemistry course. A C- or better grade in CHEM 261 is a prerequisite for CHEM 252, and CHEM 241L is a prerequisite for CHEM 262L. Students intending to take pregraduate or preprofessional exams (such as the GRE or MCAT) should plan accordingly.

CHEM—Chemistry
Undergraduate-level Courses

CHEM 70. First-Year Seminar: You Don't Have to Be a Rocket Scientist. 3 Credits.
The goal of this seminar is to develop tools for extracting information from or finding flaws in news reports and popular science writing. Group work on such issues as biomass fuels, the hydrogen economy, and other alternative energy sources will develop an understanding of their economic and environmental impact.
Gen Ed: PL.
Grading status: Letter grade.

CHEM 71. First-Year Seminar: Foundations of Chemistry: A Historical and Modern Perspective. 3 Credits.
Students will learn about ways in which scientists think. They will explore how new knowledge is generated and examine the impact of science on society. Topics to be considered include the nature of gases, atomic structure and radioactivity, and molecules and the development of new materials.
Gen Ed: PL.
Grading status: Letter grade.

CHEM 72. First-Year Seminar: From Imagination to Reality: Idea Entrepreneurism in Science, Business, the Arts. 3 Credits.
Bringing ideas to fruition is a multistep process. In the present knowledge economy, high value is placed on individuals who both formulate new concepts and bring them to reality. This process requires a number of important skills that will be explored in this course.
Gen Ed: PL.
Grading status: Letter grade.

CHEM 73. First-Year Seminar: From Atomic Bombs to Cancer Treatments: The Broad Scope of Nuclear Chemistry. 3 Credits.
A course engaging the topic of nuclear chemistry on the introductory chemistry course level (e.g., CHEM 101/102). Atomic structure, nuclear fission, and nuclear fusion processes will be introduced to provide the background necessary to understand applications of the processes. Applications discussed will include power generation, medical treatments, weapons, and more.
Gen Ed: PL.
Grading status: Letter grade.

CHEM 79. First-Year Seminar: Special Topics. 3 Credits.
Special topics course. Content will vary each semester.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 6 total credits. 2 total completions.
Grading status: Letter grade.

CHEM 101. General Descriptive Chemistry I. 3 Credits.
The first course in a two-semester sequence. See also CHEM 102. Atomic and molecular structure, stoichiometry and conservation of mass, thermochemical changes and conservation of energy.
Requisites: Prerequisite, MATH 110.
Gen Ed: PX.
Grading status: Letter grade.

CHEM 101L. Quantitative Chemistry Laboratory I. 1 Credit.
Computerized data collection, scientific measurement, sensors, thermochemistry, spectroscopy, and conductometric titration. Laptop computer required. One four-hour laboratory a week.
Requisites: Pre- or corequisite, CHEM 101.
Grading status: Letter grade.

CHEM 102. General Descriptive Chemistry II. 3 Credits.
C- or better required in CHEM 101. The course is the second in a two-semester sequence. See also CHEM 102. Gases, intermolecular forces, solutions, reaction rates, chemical equilibria including acid-base chemistry, thermochemistry, electrochemistry.
Requisites: Prerequisites, CHEM 101 and 101L.
Gen Ed: PX.
Grading status: Letter grade.

CHEM 102L. Quantitative Chemistry Laboratory II. 1 Credit.
Computerized data collection, gas laws, intermolecular forces, redox reactions, chemical kinetics, and acid-base titrations. Laptop computer required. One four-hour laboratory a week.
Requisites: Prerequisite, CHEM 101L; pre- or corequisite, CHEM 102 or 102H.
Grading status: Letter grade.

CHEM 102H. General Descriptive Chemistry II. 3 Credits.
C- or better required in CHEM 101. The course is the second in a two-semester sequence. See also CHEM 102. Gases, intermolecular forces, solutions, reaction rates, chemical equilibria including acid-base chemistry, thermochemistry, electrochemistry.
Requisites: Prerequisites, CHEM 101 and 101L.
Gen Ed: PX.
Grading status: Letter grade.

CHEM 105L. Advanced Quantitative Chemistry Laboratory. 1 Credit.

CHEM 190. Special Topics in Chemistry. 3 Credits.
An undergraduate seminar course that is designated to be a participatory intellectual adventure on an advanced, emergent, and stimulating topic within a selected discipline in chemistry. This course does not count as credit towards the chemistry major.
Grading status: Letter grade.
CHEM 200. Extraordinary Chemistry of Ordinary Things. 3 Credits.
Coregistration in CHEM 200 and 101L fulfills the physical and life science with a laboratory requirement (PX). This course helps students understand the chemistry behind important societal issues and the consequences of actions aimed at addressing the issues. Students who have taken CHEM 200 cannot take CHEM 101 for credit.
Requisites: Prerequisite, MATH 110.
Gen Ed: PX.
Grading status: Letter grade.

CHEM 241. Modern Analytical Methods for Separation and Characterization. 2 Credits.
C- or better required in prerequisite. Analytical separations, chromatographic methods, spectrophotometry, acid-base equilibria and titrations, fundamentals of electrochemistry.
Requisites: Prerequisite, CHEM 102 or 102H.
Grading status: Letter grade.

CHEM 241L. Laboratory in Separations and Analytical Characterization of Organic and Biological Compounds. 1 Credit.
Applications of separation and spectrophotometric techniques to organic compounds, including some of biological interest. One three-hour laboratory a week. Students may not receive credit for both CHEM 241L and CHEM 245L.
Requisites: Prerequisite, CHEM 102L; pre- or corequisite, CHEM 241 or 241H.
Grading status: Letter grade.

CHEM 241H. Modern Analytical Methods for Separation and Characterization. 2 Credits.
C- or better required in prerequisite. Analytical separations, chromatographic methods, spectrophotometry, acid-base equilibria and titrations, fundamentals of electrochemistry.
Requisites: Prerequisite, CHEM 102 or 102H.
Grading status: Letter grade.

CHEM 245L. Honors Laboratory in Separations and Analytical Characterization of Organic and Biological Compound. 1 Credit.
Applications of separation and spectrophotometric techniques to samples from the real world, including some of biological interest. Final portion of course consists of group research projects presented to the Department of Chemistry in poster session format. Honors equivalent of CHEM 241L. Students may not receive credit for both CHEM 241L and CHEM 245L. One three-hour laboratory each week.
Requisites: Prerequisite, CHEM 102L; pre- or corequisite, CHEM 241H.
Grading status: Letter grade.

CHEM 251. Introduction to Inorganic Chemistry. 2 Credits.
C- or better required in prerequisite. Chemical periodicity, introductory atomic theory and molecular orbital theory, structure and bonding in solids, descriptive nonmetal chemistry, structures and reactions of transition metal complexes, applications of inorganic complexes and materials.
Requisites: Prerequisite, CHEM 102 or 102H.
Grading status: Letter grade.

CHEM 251H. Introduction to Inorganic Chemistry. 3 Credits.
C- or better required in prerequisite. Molecular structure and its determination by modern physical methods, correlation between structure and reactivity and the theoretical basis for these relationships, classification of reaction types exhibited by organic molecules using as examples molecules of biological importance.
Requisites: Prerequisite, CHEM 102 or 102H.
Grading status: Letter grade.

CHEM 256L. Laboratory in Organic Chemistry. 1 Credit.
Continuation of CHEM 241L or 245L with particular emphasis on organic chemistry synthesis protocols, separation techniques, and compound characterization using modern spectroscopic instrumentation. This course serves as an organic chemistry laboratory for premedical and predental students. Students may not receive credit for both CHEM 256L and CHEM 256L. One three-hour laboratory each week.
Requisites: Prerequisites, CHEM 102L, and CHEM 241L or 245L; pre- or corequisite, CHEM 262 or 262H.
Grading status: Letter grade.

CHEM 261. Introduction to Organic Chemistry I. 3 Credits.
C- or better required in prerequisite. Molecular structure and its determination by modern physical methods, correlation between structure and reactivity and the theoretical basis for these relationships, classification of reaction types exhibited by organic molecules using as examples molecules of biological importance.
Requisites: Prerequisite, CHEM 102 or 102H.
Grading status: Letter grade.

CHEM 261H. Introduction to Organic Chemistry I. 3 Credits.
C- or better required in prerequisite. Molecular structure and its determination by modern physical methods, correlation between structure and reactivity and the theoretical basis for these relationships, classification of reaction types exhibited by organic molecules using as examples molecules of biological importance.
Requisites: Prerequisite, CHEM 102 or 102H.
Grading status: Letter grade.

CHEM 262. Introduction to Organic Chemistry II. 3 Credits.
C- or better required in prerequisite. Continuation of CHEM 261, with particular emphasis on the chemical properties of organic molecules of biological importance.
Requisites: Prerequisite, CHEM 261 or 261H.
Grading status: Letter grade.

CHEM 262H. Laboratory in Organic Chemistry. 1 Credit.
Continuation of CHEM 241L or 245L with particular emphasis on organic chemistry synthesis protocols, separation techniques, and compound characterization using modern spectroscopic instrumentation. This course serves as an organic chemistry laboratory for premedical and predental students. Students may not receive credit for both CHEM 262L and CHEM 263L. One three-hour laboratory each week.
Requisites: Prerequisites, CHEM 102L, and CHEM 241L or 245L; pre- or corequisite, CHEM 262 or 262H.
Grading status: Letter grade.

CHEM 262L. Laboratory in Organic Chemistry. 1 Credit.
Continuation of CHEM 241L or 245L with particular emphasis on organic chemistry synthesis protocols, separation techniques, and compound characterization using modern spectroscopic instrumentation. This course serves as an organic chemistry laboratory for premedical and predental students. Students may not receive credit for both CHEM 262L and CHEM 263L. One three-hour laboratory each week.
Requisites: Prerequisites, CHEM 102L, and CHEM 241L or 245L; pre- or corequisite, CHEM 262L.
Grading status: Letter grade.

CHEM 263L. Honors Laboratory in Organic Chemistry. 1 Credit.
Continuation of CHEM 241L or 245L with particular emphasis on organic chemistry synthesis protocols, separation techniques, and compound characterization using modern spectroscopic instrumentation. An organic chemistry laboratory for premedical and predental students. Honors equivalent of CHEM 262L. Students may not receive credit for both CHEM 262L and CHEM 263L. One three-hour laboratory each week.
Requisites: Prerequisites, CHEM 102L, and CHEM 241L or 245L; pre- or corequisite, CHEM 262H.
Grading status: Letter grade.

CHEM 290. Special Topics in Chemistry. 1-3 Credits.
Elective topics in the field of chemistry. This course has variable content and may be taken multiple times for credit.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 6 total credits. 2 total completions.
Grading status: Letter grade.

CHEM 291. Seminar on Academic Mentoring. 1-3 Credits.
Permission of the instructor. GPA above 3.0 required. Experience includes academic mentoring for small groups, preparing review sessions, and facilitating lecture hall activity. Direct instruction in pedagogy, leadership, communication, and group dynamics. Does not fulfill chemistry major requirements.
Requisites: Prerequisites, CHEM 102 or 102H, and MATH 231.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 6 total credits. 6 total completions.
Grading status: Pass/Fail.
CHEM 395. Research in Chemistry for Undergraduates. 3 Credits.
Required preparation, one CHEM course 420 or higher and permission of the instructor. For advanced chemistry and applied sciences majors conducting on-campus research. Students prepare a report for their faculty supervisor and present their work at a poster session. May count only once as a chemistry elective.
Gen Ed: EE-Mentored Research.
Repeat rules: May be repeated for credit. 9 total credits. 3 total completions.
Grading status: Letter grade.

CHEM 395H. Research in Chemistry for Undergraduates. 3 Credits.
Required preparation, one CHEM course 420 or higher and permission of the instructor. For advanced chemistry and applied sciences majors conducting on-campus research. Students prepare a report for their faculty supervisor and present their work at a poster session. May count only once as a chemistry elective.
Gen Ed: EE-Mentored Research.
Repeat rules: May be repeated for credit. 9 total credits. 3 total completions.
Grading status: Letter grade.

CHEM 396. Special Problems in Chemistry. 1-3 Credits.
Permission of the director of undergraduate studies. Literature or laboratory work equivalent of one to three hours each week.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 9 total credits. 3 total completions.
Grading status: Letter grade.

CHEM 396H. Special Problems in Chemistry. 1-3 Credits.
Permission of the director of undergraduate studies. Literature or laboratory work equivalent of one to three hours each week.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 9 total credits. 3 total completions.
Grading status: Letter grade.

CHEM 397H. Honors Colloquium in Chemistry. 1 Credit.
Weekly meetings complement research carried out under CHEM 395H. Expands students' exposure to specialized areas of research through guided readings and seminars with invited speakers. Aids students in preparing their research for evaluation. CHEM 395H and 397H together can contribute no more than nine total hours toward graduation.
Requisites: Corequisite, CHEM 395H.
Gen Ed: EE-Mentored Research.
Repeat rules: May be repeated for credit. 2 total credits. 2 total completions.
Grading status: Letter grade.

Advanced Undergraduate and Graduate-level Courses

CHEM 410. Instructional Methods in the Chemistry Classroom. 4 Credits.
Permission of the instructor. This course explores secondary school chemical education through current chemical education theory and classroom teaching. Students will develop a comprehensive approach to teaching chemistry content through student-centered activities.
Requisites: Prerequisites, CHEM 241, 251, 262, and 262L.
Gen Ed: EE-Field Work.
Grading status: Letter grade.

CHEM 420. Introduction to Polymer Chemistry. 3 Credits.
Chemical structure and nomenclature of macromolecules, synthesis of polymers, characteristic polymer properties.
Requisites: Prerequisite, CHEM 261 or 261H; pre- or corequisites, CHEM 262 or 262H, and 262L or 263L.
Grading status: Letter grade
Same as: APPL 420.

CHEM 421. Synthesis of Polymers. 3 Credits.
Synthesis and reactions of polymers; various polymerization techniques.
Requisites: Prerequisites, CHEM 251 and 262 or 262H.
Grading status: Letter grade
Same as: APPL 421.

CHEM 422. Physical Chemistry of Polymers. 3 Credits.
Polymerization and characterization of macromolecules in solution.
Requisites: Prerequisites, CHEM 420 and 481.
Grading status: Letter grade
Same as: APPL 422.

CHEM 423. Intermediate Polymer Chemistry. 3 Credits.
Polymer dynamics, networks and gels.
Requisites: Prerequisite, CHEM 422.
Grading status: Letter grade
Same as: APPL 423.

CHEM 425. Polymer Materials. 3 Credits.
Solid-state properties of polymers; polymer melts, glasses and crystals.
Requisites: Prerequisite, CHEM 421 or 422.
Grading status: Letter grade.

CHEM 430. Introduction to Biological Chemistry. 3 Credits.
The study of cellular processes including catalysts, metabolism, bioenergetics, and biochemical genetics. The structure and function of biological macromolecules involved in these processes is emphasized.
Requisites: Prerequisites, BIOL 101, and CHEM 262 or 262H.
Grading status: Letter grade
Same as: BIOL 430.

CHEM 430H. Introduction to Biological Chemistry. 3 Credits.
The study of cellular processes including catalysts, metabolism, bioenergetics, and biochemical genetics. The structure and function of biological macromolecules involved in these processes is emphasized.
Requisites: Prerequisites, BIOL 101, and CHEM 262 or 262H.
Grading status: Letter grade
Same as: BIOL 430H.

CHEM 431. Macromolecular Structure and Metabolism. 3 Credits.
Structure of DNA and methods in biotechnology; DNA replication and repair; RNA structure, synthesis, localization and transcriptional reputation; protein structure/function, biosynthesis, modification, localization, and degradation.
Requisites: Prerequisites, BIOL 202 and CHEM 430.
Grading status: Letter grade.

CHEM 432. Metabolic Chemistry and Cellular Regulatory Networks. 3 Credits.
Biological membranes, membrane protein structure, transport phenomena; metabolic pathways, reaction themes, regulatory networks; metabolic transformations with carbohydrates, lipids, amino acids, and nucleotides; regulatory networks, signal transduction.
Requisites: Prerequisite, CHEM 430.
Grading status: Letter grade.
CHEM 433. Transport in Biological Systems. 1 Credit.
Permission of the instructor for undergraduates. Diffusion, sedimentation, electrophoresis, flow. Basic principles, theoretical methods, experimental techniques, role in biological function, current topics.
Requisites: Prerequisites, CHEM 430 and MATH 383.
Grading status: Letter grade.

CHEM 441. Intermediate Analytical Chemistry. 2 Credits.
Spectroscopy, electroanalytical chemistry, chromatography, thermal methods of analysis, signal processing.
Requisites: Prerequisites, CHEM 241, 241L, 262, and 480 or 481.
Grading status: Letter grade.

CHEM 441L. Intermediate Analytical Chemistry Laboratory. 2 Credits.
Experiments in spectroscopy, electroanalytical chemistry, chromatography, thermal methods of analysis, and signal processing. One four-hour laboratory a week and one one-hour lecture.
Requisites: Corequisite, CHEM 441.
Grading status: Letter grade.

CHEM 444. Separations. 3 Credits.
Theory and applications of equilibrium and nonequilibrium separation techniques. Extraction, countercurrent distribution, gas chromatography, column and plane chromatographic techniques, electrophoresis, ultracentrifugation, and other separation methods.
Requisites: Prerequisites, CHEM 441 and CHEM 480 or 481.
Grading status: Letter grade.

CHEM 445. Electroanalytical Chemistry. 3 Credits.
Basic principles of electrochemical reactions, electroanalytical voltammetry as applied to analysis, the chemistry of heterogeneous electron transfers, and electrochemical instrumentation.
Requisites: Prerequisite, CHEM 480 or 481.
Grading status: Letter grade.

CHEM 446. Analytical Spectroscopy. 3 Credits.
Optical spectroscopic techniques for chemical analysis including conventional and laser-based methods. Absorption, fluorescence, scattering and nonlinear spectroscopies, instrumentation and signal processing.
Requisites: Prerequisites, CHEM 441 and 482.
Grading status: Letter grade.

CHEM 447. Bioanalytical Chemistry. 3 Credits.
Principles and applications of biospecific binding as a tool for performing selective chemical analysis.
Requisites: Prerequisite, CHEM 441.
Grading status: Letter grade.

CHEM 448. Mass Spectrometry. 3 Credits.
Fundamental theory of gaseous ion chemistry, instrumentation, combination with separation techniques, spectral interpretation for organic compounds, applications to biological and environmental chemistry.
Requisites: Prerequisite, CHEM 480 or 481.
Grading status: Letter grade.

CHEM 449. Microfabricated Chemical Measurement Systems. 3 Credits.
Introduction to micro and nanofabrication techniques, fluid and molecular transport at the micrometer to nanometer length scales, applications of microtechnology to chemical and biochemical measurements.
Requisites: Prerequisite, CHEM 441.
Grading status: Letter grade.

CHEM 450. Intermediate Inorganic Chemistry. 3 Credits.
Introduction to symmetry and group theory; bonding, electronic spectra, and reaction mechanisms of coordination complexes; organometallic complexes, reactions, and catalysis; bioinorganic chemistry.
Requisites: Prerequisite, CHEM 251.
Grading status: Letter grade.

CHEM 451. Theoretical Inorganic Chemistry. 3 Credits.
Chemical applications of symmetry and group theory, crystal field theory, molecular orbital theory. The first third of the course, corresponding to one credit hour, covers point symmetry, group theoretical foundations and character tables.
Requisites: Prerequisites, CHEM 262 or 262H and 450.
Grading status: Letter grade.

CHEM 452. Electronic Structure of Transition Metal Complexes. 3 Credits.
A detailed discussion of ligand field theory and the techniques that rely on the theoretical development of ligand field theory, including electronic spectroscopy, electron paramagnetic resonance spectroscopy, and magnetism.
Requisites: Prerequisite, CHEM 451.
Grading status: Letter grade.

CHEM 453. Physical Methods in Inorganic Chemistry. 3 Credits.
Introduction to the physical techniques used for the characterization and study of inorganic compounds. Topics typically include nuclear magnetic resonance spectroscopy, vibrational spectroscopy, diffraction, Mossbauer spectroscopy, X-ray photoelectron spectroscopy, and inorganic electrochemistry.
Requisites: Prerequisite, CHEM 451.
Grading status: Letter grade.

CHEM 460. Intermediate Organic Chemistry. 3 Credits.
Modern topics in organic chemistry.
Requisites: Prerequisite, CHEM 262 or 262H.
Grading status: Letter grade.

CHEM 460H. Intermediate Organic Chemistry. 3 Credits.
Modern topics in organic chemistry.
Requisites: Prerequisite, CHEM 262 or 262H.
Grading status: Letter grade.

CHEM 465. Mechanisms of Organic and Inorganic Reactions. 4 Credits.
Kinetics and thermodynamics, free energy relationships, isotope effects, acidity and basicity, kinetics and mechanisms of substitution reactions, one- and two-electron transfer processes, principles and applications of photochemistry, organometallic reaction mechanisms.
Requisites: Prerequisite, CHEM 450.
Grading status: Letter grade.

CHEM 466. Advanced Organic Chemistry I. 3 Credits.
A survey of fundamental organic reactions including substitutions, additions, elimination, and rearrangements; static and dynamic stereochemistry; conformational analysis; molecular orbital concepts and orbital symmetry.
Requisites: Prerequisite, CHEM 460.
Grading status: Letter grade.

CHEM 467. Advanced Organic Chemistry II. 2 Credits.
Spectroscopic methods of analysis with emphasis on elucidation of the structure of organic molecules: 1H and 13C NMR, infrared, ultraviolet, ORD-CD, mass, and photoelectron spectroscopy.
Requisites: Prerequisite, CHEM 466.
Grading status: Letter grade.
CHEM 468. Synthetic Aspects of Organic Chemistry. 3 Credits.
Modern synthetic methods and their application to the synthesis of complicated molecules.
Requisites: Prerequisite, CHEM 466.
Grading status: Letter grade.

CHEM 469. Organometallics and Catalysis. 3 Credits.
Structure and reactivity of organometallic complexes and their role in modern catalytic reactions.
Requisites: Prerequisites, CHEM 450 and 466.
Grading status: Letter grade.

CHEM 470. Fundamentals of Materials Science. 3 Credits.
Prerequisite, CHEM 482; or Crystal geometry, diffusion in solids, mechanical properties of solids, electrical conduction in solids, thermal properties of materials, phase equilibria.
Requisites: prerequisite, PHYS 128 and pre- or corequisite, PHYS 441.
Grading status: Letter grade.
Same as: APPL 470.

CHEM 471. Mathematical Techniques for Chemists. 3 Credits.
Knowledge of differential and integral calculus. Chemical applications of higher mathematics.
Requisites: Prerequisite, MATH 383; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

CHEM 472. Chemistry and Physics of Electronic Materials Processing. 3 Credits.
Permission of the instructor. A survey of materials processing and characterization used in fabricating microelectronic devices. Crystal growth, thin film deposition and etching, and microlithography.
Requisites: Prerequisite, CHEM 482 or PHYS 117 or 119.
Grading status: Letter grade.
Same as: PHYS 472, APPL 472.

CHEM 473. Chemistry and Physics of Surfaces. 3 Credits.
The structural and energetic nature of surface states and sites, experimental surface measurements, reactions on surfaces including bonding to surfaces and adsorption, interfaces.
Requisites: Prerequisite, CHEM 470.
Grading status: Letter grade.
Same as: APPL 473.

CHEM 480. Introduction to Biophysical Chemistry. 3 Credits.
Does not carry credit toward graduate work in chemistry or credit toward any track of the B.S. degree with a major in chemistry. Application of thermodynamics to biochemical processes, enzyme kinetics, properties of biopolymers in solution.
Requisites: Prerequisites, CHEM 261 or 261H, MATH 232, and PHYS 105.
Grading status: Letter grade.

CHEM 481. Physical Chemistry I. 3 Credits.
Thermodynamics, kinetic theory, chemical kinetics.
Requisites: Prerequisites, CHEM 102 or 102H, PHYS 116; pre- or corequisites, MATH 383 and PHYS 117; C- or better required in chemistry course prerequisites.
Grading status: Letter grade.

CHEM 481L. Physical Chemistry Laboratory I. 2 Credits.
Experiments in physical chemistry. Solving thermodynamic and quantum mechanical problems using computer simulations. One three-hour laboratory and a single one-hour lecture each week.
Requisites: Prerequisite, CHEM 482.
Grading status: Letter grade.

CHEM 482. Physical Chemistry II. 3 Credits.
Introduction to quantum mechanics, atomic and molecular structure, spectroscopy, statistical mechanics.
Requisites: Prerequisite, CHEM 481.
Grading status: Letter grade.

CHEM 482L. Physical Chemistry Laboratory II. 2 Credits.
Experiments in physical chemistry. One four-hour laboratory each week.
Requisites: Prerequisite, CHEM 482; pre- or corequisite, CHEM 481L.
Grading status: Letter grade.

CHEM 484. Thermodynamics and Introduction to Statistical Thermodynamics. 1-21 Credits.
Thermodynamics, followed by an introduction to the classical and quantum statistical mechanics and their application to simple systems. The section on thermodynamics can be taken separately for one hour credit.
Requisites: Prerequisite, CHEM 482.
Grading status: Letter grade.

CHEM 487. Introduction to Molecular Spectroscopy. 3 Credits.
Interaction of radiation with matter; selection rules; rotational, vibrational, and electronic spectra of molecules; laser based spectroscopy and nonlinear optical effects.
Requisites: Prerequisite, CHEM 486.
Grading status: Letter grade.

CHEM 488. Quantum Chemistry. 3 Credits.
Applications of quantum mechanics to chemistry. Molecular structure, time-dependent perturbation theory, interaction of radiation with matter.
Requisites: Prerequisite, CHEM 486.
Grading status: Letter grade.

CHEM 489. Statistical Mechanics. 3 Credits.
Applications of statistical mechanics to chemistry. Ensemble formalism, condensed phases, nonequilibrium processes.
Requisites: Prerequisite, CHEM 484.
Grading status: Letter grade.

CHEM 490. Polymer Chemistry Laboratory. 2 Credits.
Various polymerization techniques and characterization methods. One four-hour laboratory each week.
Requisites: Pre- or corequisite, CHEM 420 or 421 or 425.
Grading status: Letter grade.
Same as: APPL 520L.

CHEM 530L. Laboratory Techniques for Biochemistry. 3 Credits.
An introduction to chemical techniques and research procedures of use in the fields of protein and nucleic acid chemistry. Two four-hour laboratories and one one-hour lecture a week.
Requisites: Pre- or corequisite, CHEM 430.
Grading status: Letter grade.
CHEM 541. Analytical Microscopy. 3 Credits.
Introduction to microscopy techniques utilized in the analysis of chemical and biological samples with a focus on light, electron, and atomic force microscopy. Permission of instructor required for those missing prerequisites.

Grading status: Letter grade.

CHEM 550L. Synthetic Chemistry Laboratory I. 2 Credits.
A laboratory devoted to synthesis and characterization of inorganic complexes and materials. A four-hour synthesis laboratory, a characterization laboratory outside of the regular laboratory period, and a one-hour recitation each week.

Requisites: Prerequisites, CHEM 241L or 245L, 251, and 262L or 263L.
Gen Ed: CI.

Grading status: Letter grade.

CHEM 560L. Synthetic Organic Laboratory. 2 Credits.
An advanced synthesis laboratory focused on topics in organic chemistry. A four-hour synthesis laboratory, a characterization laboratory outside of the regular laboratory period, and a one-hour recitation each week.

Requisites: Prerequisites, CHEM 241L, 245L, 262L, 263L.
Grading status: Letter grade.

CHEM 692H. Senior Honors Thesis. 3 Credits.
CHEM 395 must have been in the same laboratory as 692H. Senior majors only. Required of all candidates for honors or highest honors.

Requisites: Prerequisite, six credit hours of CHEM 395.
Grading status: Letter grade.