The Department of Biochemistry and Biophysics in the UNC School of Medicine offers a number of courses to undergraduate students, but offers only advanced degrees and not a B.A. or B.S. degree. Undergraduate students interested in these areas should take relevant courses in the biochemical division of the Department of Chemistry and the Department of Physics. The department serves undergraduate students who are interested in biochemical research or health-related careers. It offers a series of undergraduate biochemistry classes, research opportunities, and counseling to students taking premedical, prenursing, predental, prepharmacy, or public health curricula.

Graduate Programs
- M.S. in Biochemistry and Biophysics (http://catalog.unc.edu/graduate/schools-departments/biochemistry-biophysics)
- Ph.D. in Biochemistry and Biophysics (http://catalog.unc.edu/graduate/schools-departments/biochemistry-biophysics)

BIOC—Biochemistry

Undergraduate-level Courses

BIOC 107. Introduction to Biochemistry. 4 Credits.
Recommended preparation, one year of high school chemistry. Designed for students who desire a background in biochemistry as it relates to the human body, such as premed, prenursing, preental hygiene, and allied health. Brief review of inorganic and organic chemistry, followed by a survey of biochemistry (survey continues in BIOC 108).

- **Gen Ed:** PX
- **Grading status:** Letter grade.

BIOC 108. Introduction to Biochemistry. 4 Credits.
Designed for premed, prenursing, preental hygiene, allied health, and other students who desire a background in biochemistry as it relates to the human body. Continuation of BIOC 107; covers basic and clinically relevant aspects of biochemistry. Three lecture hours and one two-hour laboratory a week.

- **Gen Ed:** PX
- **Grading status:** Letter grade.

Advanced Undergraduate and Graduate-level Courses

BIOC 442. Biochemical Toxicology. 3 Credits.
Required preparation, one course in biochemistry. Biochemical actions of toxicants and assessment of cellular damage by biochemical measurements. Three lecture hours per week.

- **Requisites:** Prerequisite, CHEM 430; permission of the instructor for students lacking the prerequisites.
- **Grading status:** Letter grade
- **Same as:** ENVR 442, TOXC 442.

BIOC 601. Enzyme Properties, Mechanisms, and Regulation. 3 Credits.
Focuses on enzyme architecture to illustrate how the shapes of enzymes are designed to optimize the catalytic step and become allosterically modified to regulate the rate of catalysis.

- **Requisites:** Prerequisite, CHEM 430; permission of the instructor for students lacking the prerequisite.
- **Grading status:** Letter grade.

BIOC 631. Advanced Molecular Biology I. 3 Credits.
Required preparation for undergraduates, at least one undergraduate course in both biochemistry and genetics. DNA structure, function, and interactions in prokaryotic and eukaryotic systems, including chromosome structure, replication, recombination, repair, and genome fluidity. Three lecture hours a week.

- **Grading status:** Letter grade
- **Same as:** GNET 631, BIOL 631, MCRO 631.

BIOC 632. Advanced Molecular Biology II. 3 Credits.
Required preparation for undergraduates, at least one undergraduate course in both biochemistry and genetics. The purpose of this course is to provide historical, basic, and current information about the flow and regulation of genetic information from DNA to RNA in a variety of biological systems. Three lecture hours a week.

- **Grading status:** Letter grade
- **Same as:** GNET 632, BIOL 632, MCRO 632.

BIOC 643. Cell Structure, Function, and Growth Control I. 3 Credits.
Comprehensive introduction to cell structure, function, and transformation.

- **Requisites:** Prerequisite, undergraduate cell biology or biochemistry or permission of the instructor.
- **Grading status:** Letter grade
- **Same as:** CBIO 643, PHCO 643, PHYI 643.

BIOC 649. Mathematics and Macromolecules. 1.5 Credit.
This course focuses on the application of mathematics to topics important in biophysics, such as thermodynamics and electrostatics. The unit is designed to help students perform more efficiently in BIOC 650, 651, and 652.

- **Grading status:** Letter grade.

BIOC 650. Basic Principles: From Basic Models to Collections of Macromolecules. 1.5 Credit.
Required preparation, two semesters of physical chemistry or permission of the instructor. Basic molecular models and their use in developing statistical descriptions of macromolecular function. Course intended primarily for graduate students.

- **Requisites:** Prerequisite, CHEM 430.
- **Grading status:** Letter grade.
BIOC 651. Macromolecular Equilibria: Conformation Change and Binding. 1.5 Credit.
Required preparation, two semesters of physical chemistry or permission of the instructor. Macromolecules as viewed with modern computational methods. Course intended primarily for graduate students.
Requisites: Prerequisite, CHEM 430.
Grading status: Letter grade.

BIOC 652. Macromolecular Equilibria. 1.5 Credit.
Required preparation, two semesters of physical chemistry or permission of the instructor. Stability of macromolecules and their complexes with other molecules. Course intended primarily for graduate students.
Requisites: Prerequisite, CHEM 430.
Grading status: Letter grade.

BIOC 655. Case Studies in Structural Molecular Biology. 3 Credits.
Principles of macromolecular structure and function with emphasis on proteins, molecular assemblies, enzyme mechanisms, and ATP enzymology.
Requisites: Prerequisite, CHEM 430; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

BIOC 660. Introduction to Light Microscopy. 1 Credit.
Fundamentals of optics and light microscope design for the novice student.
Requisites: Prerequisites, BIOC 650, 651, and 652 or permission of the course director.
Grading status: Letter grade.

BIOC 662. Macromolecular Interactions. 1 Credit.
Theory and practice of biophysical methods used in the study of interactions between macromolecules and their ligands, including surface plasmon resonance, analytical ultracentrifugation, and calorimetry.
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

BIOC 663A. Macromolecular NMR. 1 Credit.
Principles and practice of nuclear magnetic resonance spectroscopy: applications to biological macromolecule structure and dynamics in solution. Course intended primarily for graduate students.
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

BIOC 663B. Macromolecular NMR Practice. 1 Credit.
Lab section for BIOC 663A. Course intended primarily for graduate students.
Requisites: Prerequisite, BIOC 653; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

BIOC 664. Macromolecular Spectroscopy. 1 Credit.
Required preparation, two semesters of physical chemistry or permission of the instructor. Principles of UV, IR, Raman, fluorescence, and spin resonance spectroscopies; applications to the study of macromolecules and membranes. Course intended primarily for graduate students.
Requisites: Prerequisite, CHEM 430.
Grading status: Letter grade.

BIOC 665. Advanced NMR Spectroscopy Course. 1 Credit.
Advanced NMR Spectroscopy
Grading status: Pass/Fail.

BIOC 666. X Ray Crystallography of Macromolecules. 1 Credit.
Principles of protein crystallography, characterization of crystals, theory of diffraction, phasing of macromolecular crystals and structure refinement. Course intended primarily for graduate students.
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

BIOC 667. Macromolecular Crystallographic Methods. 2 Credits.
A combined lecture/laboratory workshop for serious students of protein crystallography. Course intended primarily for graduate students.
Requisites: Prerequisite, BIOC 666; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

BIOC 668. Principles of and Simulation of Macromolecular Dynamics. 1 Credit.
A combined lecture/computer lab treatment of the principles of macromolecular dynamics and structure as approached using the tools of molecular dynamics simulations. Course intended primarily for graduate students.
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

BIOC 670. Biomolecular Informatics. 1 Credit.
A combined lecture/computer lab course introducing the methods and principles of biological data management as this relates to macromolecular sequence analysis. Course intended primarily for graduate students.
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

BIOC 671. Summer Research in Biophysics. 3 Credits.
This class is a 10-week summer course in biophysics.
Grading status: Letter grade.

BIOC 673. Proteomics, Protein Identification and Characterization by Mass Spectrometry. 1 Credit.
A lecture module that introduces students to mass spectrometry-based proteomics in new biology discovery and precision medicine. Course intended primarily for graduate students.
Requisites: Prerequisites, BIOC 650, 651, and 652, or one semester of physical chemistry; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

BIOC 674. Ion Channels Transporters. 1 Credit.
Ion Channels Transporters
Grading status: Pass/Fail.

BIOC 676. Electrical Signals from Macromolecular Assemblages. 2 Credits.
An intensive, six-hour per week introduction to the fundamentals of ion channel biophysics, including laboratory sessions to demonstrate principles and methods. Course intended primarily for graduate students.
Requisites: Prerequisites, BIOC 650, 651, and 652; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.