Research includes the formation, structure, and evolution of stars, and the active fields of research are biophysics, medical physics, condensed-matter physics, materials physics, nanotechnology, nuclear physics, neutrino physics and nuclear astrophysics, quantum field theory, theoretical particle physics, general relativity and gravitation, extragalactic and stellar astronomy, and astrophysics. Students can also work in the UNC–Chapel Hill biophysics program, or they can study under any advisor so long as the research project is supervised by a committee that contains a majority of UNC–Chapel Hill Department of Physics and Astronomy faculty members. The graduate courses are designed to give students a broad foundation and to introduce them to the special fields in which the research interests of the department lie.

The general regulations of The Graduate School govern the work for the degrees of master of science and doctor of philosophy. To begin a graduate program in physics or astrophysics, the student should have completed most of the requirements for the degree of bachelor of science with a major in physics at the University, or their equivalent elsewhere. The minimum prerequisite for graduate study consists of the basic undergraduate courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 118</td>
<td>Introductory Calculus-based Mechanics and Relativity</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 119</td>
<td>Introductory Calculus-based Electromagnetism and Quanta</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 128L</td>
<td>Modern Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 311</td>
<td>Electromagnetism I</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 321</td>
<td>Introduction to Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 401</td>
<td>Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 412</td>
<td>Electromagnetism II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 441</td>
<td>Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 521</td>
<td>Applications of Quantum Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Together with the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 232</td>
<td>Calculus of Functions of One Variable II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 233</td>
<td>Calculus of Functions of Several Variables (^H)</td>
<td>4</td>
</tr>
<tr>
<td>MATH 528</td>
<td>Mathematical Methods for the Physical Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 38

\(^H\) Honors version available. An honors course fulfills the same requirements as the nonhonors version of that course. Enrollment and GPA restrictions may apply.

Research Interests

Astronomy and Astrophysics

Research includes the formation, structure, and evolution of stars, our Milky Way galaxy, evolution and dynamics of galaxies, gamma ray bursters, cosmology, numerical relativity and sources of gravitational radiation, stellar seismology and quasars, exo-planets, and interstellar medium physics. UNC–Chapel Hill has guaranteed observing time on the 4.1-meter SOAR Telescope in Chile and on the 11-meter SALT Telescope in South Africa. UNC–Chapel Hill operates a number of smaller robotic telescopes as well and maintains multiple astronomical instrumentation laboratories dedicated to adaptive optics and state-of-the-art spectroscopy.

Biological and Medical Physics

Experimental studies include manipulation and force measurement techniques with applications to DNA, molecular motors, cells, and cilia, and hydration effects in adsorption of biochemicals. There is also a strong focus on the theoretical and experimental translational research in medical imaging technologies, including radiotherapy instruments based on carbon nanotube X-ray emitters such as single-cell irradiation and in vivo micro-CT; optical coherence tomography with nanoparticle molecular imaging agents; and systems-level implementation of tomographic imaging instruments.

Condensed-Matter Physics

Experimental and theoretical studies of nanomaterials. Atomic scale studies of devices and nanoelectromechanical systems, including quantum computation and transport, actuating nanomotors and sensors, amorphous materials, semiconductors, superconductors, the optical properties of solids, charge transport in solids and fluids, epitaxial growth, magnetic materials and heterostructures.

Field Theory, Particle Physics, Cosmology, Gravitation and Relativity

Research includes gauge field theories, quantum chromodynamics, electroweak theory, grand unified theories, string theory, supersymmetry, supergravity, quantum gravity, theoretical cosmology, numerical relativity, gravitational radiation, and relativistic astrophysics.

Materials Science and Materials Physics

Experimental and theoretical research in the design, synthesis, integration, and characterization of novel solid state materials, including nanostructured materials such as quantum dots, carbon nanotubes and nanorods, quasi-crystals, and metallic glass. Applications of novel materials for solar energy, electron field emission, probes and sensors, and data storage. Applications include flat-panel displays, an X-ray system for biomedical imaging, and rechargeable batteries.

Nuclear Physics

Experimental and theoretical work includes neutrino oscillations and neutrino mass measurements, fundamental symmetries and weak interactions in supernovae. The structure and evolution of stars are investigated using nuclear probes. The origin of the elements in the universe is studied using local accelerator facilities. The nature of the nuclear force and properties of few-body systems. Polarized beams of light ions and gamma-rays and polarized 3He target. Applied nuclear physics.

Facilities and Equipment

Research in physics and astronomy is carried out in laboratories on and off the Chapel Hill campus. Within Phillips Hall and Chapman Hall there are several major research laboratories including the "nanomanipulator" (a combination of a scanning electron microscope, an atomic force microscope, and sophisticated visualization graphics); the Keck Laboratory for Atomic Imaging and Manipulation, which includes...
two transmission electron microscopes; and the Goodman Laboratory for Astronomical Instrumentation. Other facilities include apparatus for nuclear magnetic resonance studies, scanning probe microscopes, and Raman and optical spectrometers. For synthesis and fabrication, major facilities include molecular beam epitaxy, microwave plasma-enhanced chemical vapor deposition, laser ablation, and photolithography and reactive ion etching. Resources for highly parallel computing are provided by UNC’s Information and Technology Services as well as by national centers.

The department is a partner in the Triangle Universities Nuclear Laboratory and plays a major role in experiments using the Laboratory for Experimental Nuclear Astrophysics (LENA), Tandem Accelerator, and the High-Intensity Gamma-Ray Source at the Free Electron Laser facility. UNC—Chapel Hill has an active program in low-background physics at the KURF underground facility near Blacksburg, VA. UNC—Chapel Hill has a 0.6-meter on-campus telescope and is a major partner in the 4.1-meter SOAR Telescope in Chile and the 11-meter Southern African Large Telescope (SALT) in South Africa. The department operates the PROMPT array of robotic telescopes in Chile and manages the SkyNet array of robotic telescopes. Numerous national laboratories, including Oak Ridge, Brookhaven, NIST, Los Alamos, and Argonne, as well as KamiLAND, NRAO, NOAO, the Hubble Space Telescope, and the Chandra X-ray Observatory are also vital parts of our research efforts.

Fellowships and Assistantships

Teaching Assistantships (with stipends of $17,160 for nine months) are available to qualified graduate students. Summer employment is usually available. The duties of assistants include supervising laboratory classes in elementary physics or astronomy, assisting in the supervision of advanced laboratories, teaching recitation sections, and grading papers. Graduate School fellowships are available for well-qualified applicants to the department’s graduate program. Graduate students can usually be supported in the summer by teaching or research.

Research assistantships are also offered, especially to those who have completed a year or two of graduate work. The stipend is at least $22,881 for the calendar year.

Application forms for admission, including graduate appointments, should be completed online (http://gradschool.unc.edu/admissions).

The M.S. degree in physics may be taken with or without a thesis. However, even if a thesis is not submitted, a student must work with a research group for at least one semester in order to learn the research techniques in a field of physics or astronomy. If the research is theoretical, the student must also gain experimental experience for at least one semester. A minor is not required for the M.S. degree, but one may be chosen in accord with the regular graduate requirements for this option. The equivalent of one semester of teaching experience is required of all M.S. degree candidates. The M.S. astrophysics track must include the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 701</td>
<td>Stellar Interiors, Evolution, and Populations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>and a minimum of six hours from:</td>
<td></td>
</tr>
<tr>
<td>ASTR 519</td>
<td>Observational Astronomy</td>
<td>6</td>
</tr>
<tr>
<td>ASTR 702</td>
<td>High Energy Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 703</td>
<td>Structure and Evolution of Galaxies</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 704</td>
<td>Cosmology</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

The requirements for a Ph.D. in the Department of Physics and Astronomy are as follows:

a. Successful completion of the following core courses in the department, or completion of their equivalents elsewhere as an undergraduate or graduate student:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 701</td>
<td>Classical Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 711</td>
<td>Electromagnetic Theory I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 721</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 741</td>
<td>Statistical Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

b. Passing the Ph.D. written examination based on core graduate courses in (a) taken by that student

c. Gaining experimental experience either through master’s or doctoral research, or (if the student’s research is theoretical) by performing an experimental project deemed adequate by the director of graduate studies

d. Passing at least three other advanced graduate-level courses that have been approved by the director of graduate studies

A Ph.D. candidate is also expected to take a preliminary doctoral oral examination within the first three years of graduate study in physics at UNC—Chapel Hill. The oral examination is concerned mainly with the student’s dissertation research project. A minor is not required but may be elected, in which case requirement c) above is replaced by the requirement that the student pass at least five graduate-level courses selected from no more than two departments, with no fewer than two courses in either department. The minor program must be approved in advance by the minor department. Teaching experience as part of professional training is required of all doctoral candidates. This experience can be gained through laboratory or lecture instruction as a teaching assistant, either for two semesters or until teaching competence is acquired.

Following the faculty member’s name is a section number that students should use when registering for independent studies, reading, research, and thesis and dissertation courses with that particular professor.

Professors

Gerald N. Cecil (47), Experimental Astrophysics
Arthur E. Champagne (51), Experimental Nuclear Physics and Astrophysics
J. Christopher Clemens (64), Observational Astronomy, Astrophysics, Astronomical Instrumentation
Louise A. Dolan (49), Theoretical Particle Physics, Quantum Gravity
Jonathan Engel (57), Theoretical Nuclear Physics
Charles R. Evans (48), Gravity, Relativity, Theoretical Astrophysics
Christian G. Iliadis (61), Experimental Nuclear Physics and Astrophysics
Hugon J. Karwowski (37), Experimental Nuclear Physics and Astrophysics
Dmitri V. Khveshchenko (1), Theoretical Physics
Jianping Lu (56), Condensed Matter Theory, Nanotechnology, Medical Physics
<table>
<thead>
<tr>
<th>Name</th>
<th>Research Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurie E. McNeil (36)</td>
<td>Experimental Condensed Matter and Materials Physics</td>
</tr>
<tr>
<td>Y. Jack Ng (30)</td>
<td>Theoretical Particle Physics, Gravitation</td>
</tr>
<tr>
<td>Lu-Chang Qin (27)</td>
<td>Materials Science, Nanotechnology</td>
</tr>
<tr>
<td>Daniel E. Reichart (13)</td>
<td>Gamma Ray Bursts, Early Universe, Interstellar Extinction, Galaxy Clusters</td>
</tr>
<tr>
<td>Richard Superfine (55)</td>
<td>Experimental Studies of Interfaces, Biophysics</td>
</tr>
<tr>
<td>Frank Tsui (59)</td>
<td>Experimental Condensed Matter and Materials Physics</td>
</tr>
<tr>
<td>Sean Washburn (50)</td>
<td>Experimental Condensed Matter and Materials Physics</td>
</tr>
<tr>
<td>John Wilkerson, (12)</td>
<td>Experimental Neutrino Physics and Fundamental Symmetries</td>
</tr>
<tr>
<td>Yue Wu (54)</td>
<td>Nuclear Magnetic Resonance, Electron Spin Resonance in Solids</td>
</tr>
<tr>
<td>Otto E. Zhou (62)</td>
<td>Materials Science, Nanotechnology</td>
</tr>
</tbody>
</table>

Associate Professors

- Fabian Heitsch (26), Computational Astrophysics
- Reyco Henning (11), Neutrino Physics, Particle Astrophysics
- Sheila Kannappan (14), Observational Extragalactic Astronomy
- Rene Lopez (25), Experimental Condensed Matter Physics
- Laura Mersini (19), Theoretical Cosmology
- Amy Oldenburg, Biophotonics and Biomechanics

Assistant Professors

- Rosa Tamara Branca, NMR Imaging
- Joaquin Drut, Theory of Strongly Interacting Systems
- Adrienne Erickcek, Theoretical Astrophysics and Cosmology
- Jonathan Heckman, Theoretical Physics, String Theory, F Theory
- Nicholas Law, Astrophysics

Lecturers

- Alice Churukian, UNC–BEST, Physics Education Research
- Duane Deardorff, Lab Director, Physics Education Research
- Colin Wallace, Physics Education Research

Research Professors

- Michael R. Falvo, Biophysics, Nanomechanics
- Alfred Kleinhannes, Condensed Matter Physics, Materials Science

Research Associate Professor

- E. Timothy O'Brien, Physics Related to Biology, Light Microscopy, Biological Sample Preparation

Research Assistant Professor

- David B. Hill, Biophysics

Adjunct Professors

- Sha X. Chang, Medical Physics
- Richard T. Hammond, General Relativity, Gravity, Optics
- David Radford, Nuclear Physics
- Ryan M. Rohm, Quantum Field Theory, Theoretical Particle Physics
- Jie Tang, Materials Physics, Nanomaterials

Adjunct Assistant Professor

- Yueh Lee, Medical Physics

Professors Emeriti

- C. Victor Briscoe
- Bruce W. Carney
- Sang-II Choi
- Wayne Christiansen
- Thomas B. Clegg
- Kian S. Dy
- John Hernandez
- William M. Hooke
- Paul S. Hubbard
- Horst Kessemeier
- Edward J. Ludwig
- J. Ross MacDonald
- Nalin R. Parikh
- James Rose
- Larry Rowan
- Dietrich Schroeer
- Stephen M. Shafroth
- Lawrence M. Slifkin
- William J. Thompson
- James W. York Jr.

ASTR Advanced Undergraduate and Graduate-level Courses

ASTR 501. Astrophysics I (Stellar Astrophysics). 3 Credits.
An introduction to the study of stellar structure and evolution. Topics covered include observational techniques, stellar structure and energy transport, nuclear energy sources, evolution off the main-sequence, and supernovae.

Requisites: Prerequisites, ASTR 202 or ASTR 301, MATH 383, and PHYS 331; permission of the instructor for students lacking the prerequisites.

Grading status: Letter grade.

ASTR 502. Astrophysics II (Modern Research in Astrophysics). 3 Credits.
An introduction to modern research in astrophysics based on scientific journal articles addressing a current topic of interest in galactic or extragalactic astrophysics, including training in computer modeling and statistical analysis, culminating in the completion of a research project.

Requisites: Prerequisites, ASTR 202 or ASTR 301, and MATH 383; pre- or corequisite, PHYS 331.

Gen Ed: EE-Mentored Research.

Grading status: Letter grade.

ASTR 503. Structure and Evolution of Galaxies. 3 Credits.
Internal dynamics and structure of galaxies; physics of star formation, active galactic nuclei, and galaxy interactions; large-scale clustering and environment-dependent physical processes; evolution of the galaxy population over cosmic time.

Requisites: Prerequisites, ASTR 202 or ASTR 301, MATH 383, and PHYS 331.

Grading status: Letter grade.

ASTR 504. Cosmology. 3 Credits.
An introduction to modern cosmology: the study of the contents and evolution of the universe. Covers expanding spacetime, the thermal history of the early universe, including nucleosynthesis and the cosmic microwave background, the inflationary model for the origins of cosmic structure, and the growth of that structure through time.

Requisites: Prerequisites, ASTR 202 or ASTR 301, and PHYS 401; pre- or corequisite, PHYS 321.

Grading status: Letter grade.
ASTR 505. Physics of Interstellar Gas. 3 Credits.
Surveys the physical processes governing the interstellar medium (ISM), which takes up the "refuse" of old stars while providing fuel for young stars forming. Covers the processes regulating the galactic gas budget and the corresponding observational diagnostics. Topics: radiative transfer, line formation mechanisms, continuum radiation, gas dynamics, star formation.

Requisites: Prerequisites, ASTR 202 or ASTR 301, MATH 383, and PHYS 331.

Grading status: Letter grade.

ASTR 519. Observational Astronomy. 4 Credits.
Prerequisite, ASTR 202; or A course designed to familiarize the student with observational techniques in optical and radio astronomy, including application of photography, spectroscopy, photometry, and radio methods. Three lecture and three laboratory hours a week.

Requisites: prerequisite, ASTR 102 and pre- or corequisite, PHYS 331; permission of the instructor for students lacking the prerequisite.

Grading status: Letter grade.

Graduate-level Courses

ASTR 701. Stellar Interiors, Evolution, and Populations. 3 Credits.
Stellar structure and evolution, including equations of stellar structure, stellar models, star and planet formation, fusion and nucleosynthesis, stellar evolution, stellar remnants, and the comparison of theory to observations.

ASTR 702. High Energy Astrophysics. 3 Credits.

Requisites: Prerequisites, PHYS 711 and 721.

ASTR 703. Structure and Evolution of Galaxies. 3 Credits.
Internal dynamics and structure of galaxies; physics of star formation, active galactic nuclei, and galaxy interactions; large-scale clustering and environment-dependent physical processes; evolution of the galaxy population over cosmic time.

ASTR 704. Cosmology. 3 Credits.
General relativity and cosmological world models; thermal history of the early universe, nucleosynthesis, and the cosmic microwave background; growth of structure through cosmic time.

Requisites: Co-requisite, PHYS 701.

ASTR 705. Astrophysical Atmospheres. 3 Credits.
Radiative transfer, opacities, spectral line formation, energy transport, models, chemical abundance determination, interstellar chemistry, magnetic fields. Applications to observations of planetary, stellar and solar, galactic (ISM), and intergalactic gaseous atmospheres.

Requisites: Prerequisites, PHYS 711 and 721.

ASTR 719. Astronomical Data. 4 Credits.
Required preparation, physics-based cosmology course or permission of the instructor. A course designed to familiarize the student with observational techniques in optical and radio astronomy, including application of photography, spectroscopy, photometry, and radio methods. Three lecture and three laboratory hours a week.

ASTR 891. Seminar in Astrophysics. 1-21 Credits.
Recent observational and theoretical developments in stellar, galactic, and extragalactic astrophysics.
PHYS 441. Thermal Physics. 3 Credits.
Equilibrium statistical mechanics; the laws of thermodynamics, internal energy, enthalpy, entropy, thermodynamic potentials, Maxwell’s equations.
Requisites: Prerequisites, MATH 233, and PHYS 117 or 119; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade
Same as: BMME 441.

PHYS 471. Physics of Solid State Electronic Devices. 3 Credits.
Properties of crystal lattices, electrons in energy bands, behavior of majority and minority charge carriers, PN junctions related to the structure and function of semiconductor diodes, transistors, display devices.
Requisites: Prerequisite, PHYS 117 or 119; pre- or corequisite, PHYS 211 or 311.
Grading status: Letter grade.

PHYS 472. Chemistry and Physics of Electronic Materials Processing. 3 Credits.
Permission of the instructor. A survey of materials processing and characterization used in fabricating microelectronic devices. Crystal growth, thin film deposition and etching, and microlithography.
Requisites: Prerequisite, CHEM 482 or PHYS 117 or 119.
Grading status: Letter grade
Same as: APPL 472, CHEM 472.

PHYS 481L. Advanced Laboratory I. 2 Credits.
Selected experiments illustrating modern techniques such as the use of laser technology to study the interaction of electromagnetic fields and matter. Six laboratory hours a week.
Requisites: Prerequisite, PHYS 351 or 352; permission of the instructor for students lacking the prerequisites.
Grading status: Letter grade.

PHYS 491L. Materials Laboratory I. 2 Credits.
Structure determination and measurement of the optical, electrical, and magnetic properties of solids.
Requisites: Prerequisites, APPL 470 and PHYS 351.
Grading status: Letter grade
Same as: APPL 491L.

PHYS 492L. Materials Laboratory II. 2 Credits.
Continuation of PHYS 491L with emphasis on low- and high-temperature behavior, the physical and chemical behavior of lattice imperfections and amorphous materials, and the nature of radiation damage.
Requisites: Prerequisite, APPL 491L or PHYS 491L.
Grading status: Letter grade
Same as: APPL 492L.

PHYS 510. Seminar for Physics and Astronomy Teaching Assistants. 1 Credit.
How students learn and understand physics and astronomy. How to teach using current research-based methods.
Grading status: Letter grade.

PHYS 521. Applications of Quantum Mechanics. 3 Credits.
Emphasizes atomic physics but includes topics from nuclear, solid state, and particle physics, such as energy levels, the periodic system, selection rules, and fundamentals of spectroscopy.
Requisites: Prerequisite, PHYS 321.
Grading status: Letter grade.

PHYS 543. Nuclear Physics. 3 Credits.
Structure of nucleons and nuclei, nuclear models, forces and interactions, nuclear reactions.
Requisites: Prerequisite, PHYS 321; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

PHYS 545. Introductory Elementary Particle Physics. 3 Credits.
Relativistic kinematics, symmetries and conservation laws, elementary particles and bound states, gauge theories, quantum electrodynamics, chromodynamics, electroweak unification, standard model and beyond.
Requisites: Prerequisites, PHYS 321 and 412.
Grading status: Letter grade.

PHYS 573. Introductory Solid State Physics. 3 Credits.
Crystal symmetry, types of crystalline solids; electron and mechanical waves in crystals, electrical and magnetic properties of solids, semiconductors; low temperature phenomena; imperfections in nearly perfect crystals.
Requisites: Prerequisite, PHYS 321; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

PHYS 581. Renewable Electric Power Systems. 3 Credits.
Broad and quantitative study of renewable electric power systems: wind systems, photovoltaic cells, distributed generation (concentrating solar power, microhydro, biomass), and the economics of these technologies.
Requisites: Prerequisites, BIOL 101L, and 202 or 271; and PHYS 131, and 131L or 281L, and 201 or 401, and 211 or 311, and 351; pre- or corequisites, CHEM 261 and 481.
Grading status: Letter grade.

PHYS 582. Decarbonizing Fuels. 3 Credits.
Assess quantitatively the feasibility of powering humanity without increasing release of climate-altering carbon dioxide and other organic greenhouse gases into the atmosphere. Can these gases be removed? Which bio-chemical-physical novelties may scale to meet growing demand and at what cost?
Requisites: Prerequisites, BIOL 101L, and 202 or 271; and PHYS 131, and 131L or 281L, and 201 or 401, and 211 or 311, and 351; pre- or corequisites, CHEM 261 and 481.
Grading status: Letter grade.

PHYS 585. Imaging Science: From Cells to Stars. 3 Credits.
Fundamentals of imaging as applied to biological, medical and astronomy imaging systems. Physics of radiation and particle sources, image formation and detection physics. Principles of optics, coherence, Fourier methods, statistics, especially as they cross disciplinary boundaries for new opportunities in imaging.
Requisites: Prerequisites, MATH 233 and PHYS 118.
Grading status: Letter grade.

PHYS 594. Nonlinear Dynamics. 3 Credits.
Interdisciplinary introduction to nonlinear dynamics and chaos. Fixed points, bifurcations, strange attractors, with applications to physics, biology, chemistry, finance.
Requisites: Prerequisite, MATH 383; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade
Same as: MATH 594.
PHYS 631. Mathematical Methods of Theoretical Physics I. 3 Credits.
Vector fields, curvilinear coordinates, functions of complex variables, linear differential equations of second order, Fourier series, integral transforms, delta sequence.
Requisites: Prerequisites, PHYS 281L and PHYS 358.
Grading status: Letter grade.

PHYS 632. Mathematical Methods of Theoretical Physics II. 3 Credits.
Partial differential equations, special functions, Green functions, variational methods, traveling waves, and scattering.
Requisites: Prerequisite, PHYS 631; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

PHYS 633. Scientific Programming. 3 Credits.
Required preparation, elementary Fortran, C, or Pascal programming. Structured programming in Fortran or Pascal; use of secondary storage and program packages; numerical methods for advanced problems, error propagation and computational efficiency; symbolic mathematics by computer.
Requisites: Prerequisite, PHYS 401; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

PHYS 660. Fluid Dynamics. 3 Credits.
The physical properties of fluids, kinematics, governing equations, viscous incompressible flow, vorticity dynamics, boundary layers, irrotational incompressible flow.
Requisites: Prerequisite, PHYS 401; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

PHYS 671L. Independent Laboratory I. 3 Credits.
Six laboratory hours a week.
Requisites: Prerequisites, PHYS 401 and 412; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

PHYS 672L. Independent Laboratory II. 3 Credits.
Six laboratory hours a week.
Requisites: Prerequisites, PHYS 401 and 412; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade.

PHYS 691H. Senior Honor Thesis Research I. 3 Credits.
Permission of the instructor. Readings in physics and directed research for a senior honor thesis project. Required of all candidates for graduation with honors in physics.
Gen Ed: EE-Mentored Research.
Grading status: Letter grade.

PHYS 692H. Senior Honor Thesis Research II. 3 Credits.
Readings in physics and directed research for a senior honor thesis project. Required of all candidates for graduation with honors in physics.
Requisites: Prerequisite, PHYS 691H.
Gen Ed: EE-Mentored Research.
Grading status: Letter grade.

Graduate-level Courses

PHYS 701. Classical Dynamics. 3 Credits.
Requisites: Prerequisite, advanced undergraduate mechanics.

PHYS 702. Quantum Mechanics. 3 Credits.
Review of nonrelativistic quantum mechanics. Spin, angular momentum, perturbation theory, scattering, identical particles, Hartree-Fock method, Dirac equation, radiation theory.
Requisites: Prerequisite, PHYS 721.

PHYS 703. Advanced Spectroscopic Techniques. 3 Credits.
Advanced spectroscopic techniques, including Rutherford backscattering-channeling, perturbed angular correlation, Raman scattering, electron paramagnetic resonance, nuclear magnetic resonance, optical absorption, and Hall effect. Two hours of lecture and three hours of laboratory a week.
Requisites: Prerequisite, PHYS 401 or 412; permission of the instructor for students lacking the prerequisite.

PHYS 704. Advanced Quantum Mechanics. 3 Credits.
Advanced angular momentum, atomic and molecular theory, many-body quantum field theory.
Requisites: Prerequisite, PHYS 722.

PHYS 705. Electromagnetic Theory II. 3 Credits.
Plane electromagnetic waves and wave propagation, wave guides and resonant cavities, simple radiating systems, scattering and diffraction, special theory of relativity, radiation by moving charges.
Requisites: Prerequisite, PHYS 711.

PHYS 706. Fluid Dynamics. 3 Credits.
Classical and quantal statistical mechanics, ensembles, partition functions, ideal Fermi and Bose gases.
Requisites: Prerequisites, PHYS 701 and 721.

PHYS 707. Advanced Spectroscopic Techniques. 3 Credits.
Advanced spectroscopic techniques, including Rutherford backscattering-channeling, perturbed angular correlation, Raman scattering, electron paramagnetic resonance, nuclear magnetic resonance, optical absorption and Hall effect. One hour of lecture and five hours of laboratory a week.
Requisites: Prerequisite, PHYS 401 or 412; permission of the instructor for students lacking the prerequisite.

PHYS 708. Advanced Quantum Mechanics. 3 Credits.
Advanced angular momentum, atomic and molecular theory, many-body quantum field theory.
Requisites: Prerequisite, PHYS 722.

PHYS 709. Electromagnetic Theory II. 3 Credits.
Plane electromagnetic waves and wave propagation, wave guides and resonant cavities, simple radiating systems, scattering and diffraction, special theory of relativity, radiation by moving charges.
Requisites: Prerequisite, PHYS 711.

PHYS 710. Fluid Dynamics. 3 Credits.
Classical and quantal statistical mechanics, ensembles, partition functions, ideal Fermi and Bose gases.
Requisites: Prerequisites, PHYS 701 and 721.

PHYS 711. Electromagnetic Theory I. 3 Credits.
Electrostatics, magnetostatics, time-varying fields, Maxwell’s equations.
Requisites: Prerequisites, PHYS 631 and 632.

PHYS 712. Electromagnetic Theory I. 3 Credits.
Plane electromagnetic waves and wave propagation, wave guides and resonant cavities, simple radiating systems, scattering and diffraction, special theory of relativity, radiation by moving charges.
Requisites: Prerequisite, PHYS 711.

PHYS 715. Visualization in the Sciences. 3 Credits.
Computational visualization applied in the natural sciences. For both computer science and natural science students. Available techniques and their characteristics, based on human perception, using software visualization toolkits. Project course.
Same as: COMP 715, MTSC 715.

PHYS 721. Quantum Mechanics. 3 Credits.
Review of nonrelativistic quantum mechanics. Spin, angular momentum, perturbation theory, scattering, identical particles, Hartree-Fock method, Dirac equation, radiation theory.
Requisites: Prerequisite, PHYS 321.

PHYS 722. Quantum Mechanics. 3 Credits.
Review of nonrelativistic quantum mechanics. Spin, angular momentum, perturbation theory, scattering, identical particles, Hartree-Fock method, Dirac equation, radiation theory.
Requisites: Prerequisite, PHYS 321.

PHYS 741. Statistical Mechanics. 3 Credits.
Classical and quantal statistical mechanics, ensembles, partition functions, ideal Fermi and Bose gases.
Requisites: Prerequisites, PHYS 701 and 721.

PHYS 742. Quantum Mechanics. 3 Credits.
Review of nonrelativistic quantum mechanics. Spin, angular momentum, perturbation theory, scattering, identical particles, Hartree-Fock method, Dirac equation, radiation theory.
Requisites: Prerequisite, PHYS 321.

PHYS 743. Statistical Mechanics. 3 Credits.
Classical and quantal statistical mechanics, ensembles, partition functions, ideal Fermi and Bose gases.
Requisites: Prerequisites, PHYS 701 and 721.

PHYS 751. Advanced Quantum Mechanics. 3 Credits.
Advanced angular momentum, atomic and molecular theory, many-body quantum field theory.
Requisites: Prerequisite, PHYS 722.

PHYS 761. Advanced Quantum Mechanics. 3 Credits.
Advanced angular momentum, atomic and molecular theory, many-body quantum field theory.
Requisites: Prerequisite, PHYS 722.

PHYS 762. Field Theory. 3 Credits.
Quantum field theory, path integrals, gauge invariance, renormalization group, Higgs mechanism, electroweak theory, quantum chromodynamics, Standard Model, unified field theories.
Requisites: Prerequisite, PHYS 722.

PHYS 763. Field Theory. 3 Credits.
Quantum field theory, path integrals, gauge invariance, renormalization group, Higgs mechanism, electroweak theory, quantum chromodynamics, Standard Model, unified field theories.
Requisites: Prerequisite, PHYS 722.
PHYS 824. Group Theory and its Applications. 3 Credits.

PHYS 827. Principles of Chemical Physics. 3 Credits.
The quantum mechanics of molecules and their aggregates. Atomic orbitals, Hartree-Fock methods for atoms and molecules. Special topics of interest to the instructor and research students.
Requisites: Prerequisite, CHEM 781 or PHYS 321; permission of the instructor for students lacking the prerequisite.
Same as: CHEM 788.

PHYS 829. Principles of Magnetic Resonance. 3 Credits.
Requisites: Prerequisite, CHEM 781 or PHYS 721; permission of the instructor for students lacking the prerequisite.

PHYS 831. Differential Geometry in Modern Physics. 3 Credits.
Applications to electrodynamics, general relativity, and nonabelian gauge theories of methods of differential geometry, including tensors, spinors, differential forms, connections and curvature, covariant exterior derivatives, and Lie derivatives.
Requisites: Prerequisites, PHYS 701, 711, and 712.

PHYS 832. General Theory of Relativity. 3 Credits.
Requisites: Prerequisite, PHYS 831.

PHYS 861. Nuclear Physics. 3 Credits.
Nuclear reactions, scattering, nuclear structure, nuclear astrophysics.
Requisites: Prerequisites, PHYS 543 and 721.

PHYS 862. Nuclear Physics. 3 Credits.
Requisites: Prerequisites, PHYS 543 and 721.

PHYS 871. Solid State Physics. 3 Credits.
Equivalent experience for students lacking the prerequisite. Topics considered include those of PHYS 573, but at a more advanced level, and in addition a detailed discussion of the interaction of waves (electromagnetic, elastic, and electron waves) with periodic structures, e.g., X-ray diffraction, phonons, band theory of metals and semiconductors.
Requisites: Prerequisite, PHYS 321.
Same as: MTSC 871.

PHYS 872. Solid State Physics. 3 Credits.
Topics considered include those of PHYS 573, but at a more advanced level, and in addition a detailed discussion of the interaction of waves (electromagnetic, elastic, and electron waves) with periodic structures, e.g., X-ray diffraction, phonons, band theory of metals and semiconductors.
Requisites: Prerequisite, PHYS 321.
Same as: MTSC 872.

PHYS 873. Theory of the Solid State. 3 Credits.
Requisites: Prerequisite, PHYS 722.

PHYS 883. Current Advances in Physics. 3 Credits.
Permission of the instructor. In recent years, elementary particle physics, amorphous solids, neutrinos, and electron microscopy have been among the topics discussed.

PHYS 885. Introductory Graduate Seminar in Physics and Astronomy. 1 Credit.
Introduction to skills needed for success in graduate courses and research, including practice using general-purpose mathematical/computational tools, assessment of the research landscape and research project design, preparing a proposal, and participating in peer review. Professional development topics such as ethics and etiquette, time management, and career planning are also covered.

PHYS 893. Seminar in Solid State Physics. 1-21 Credits.
Research topics in condensed-matter physics, with emphasis on current experimental and theoretical studies.

PHYS 895. Seminar in Nuclear Physics. 1-21 Credits.
Current research topics in low-energy nuclear physics, especially as related to the interests of the Triangle Universities Nuclear Laboratory.

PHYS 896. Seminar in Particle Physics. 1-21 Credits.
Symmetries, gauge theories, asymptotic freedom, unified theories of weak and electromagnetic interactions, and recent developments in field theory.

PHYS 897. Seminar in Theoretical Physics. 1-21 Credits.
Topics from current theoretical research including, but not restricted to, field theory, particle physics, gravitation, and relativity.

PHYS 898. Seminar in Professional Practice. 1-21 Credits.
Required preparation, Ph.D. written exam passed. The role and responsibilities of a physicist in the industrial or corporate environment and as a consultant.

PHYS 901. Research. 1-21 Credits.
10 or more laboratory or computation hours a week.

PHYS 992. Master's (Non-Thesis). 3 Credits.

PHYS 993. Master's Research and Thesis. 3 Credits.

PHYS 994. Doctoral Research and Dissertation. 3 Credits.
Fall or spring. Staff.
Repeat rules: May be repeated for credit.

*The PHYS 821 and PHYS 896 sequence alternates with PHYS 822 and PHYS 823.