Contact Information
Department of Pharmacology
http://www.med.unc.edu/pharm

Henrik Dohlman, Chair

The Department of Pharmacology offers a program of study that leads to the degree of doctor of philosophy in pharmacology. The curriculum is individualized in recognition of the diverse backgrounds and interests of students and the broad scope of the discipline of pharmacology.

The department offers a variety of research areas including:
1. Receptors and signal transduction
2. Ion channels
3. Neuropharmacology
4. Cancer pharmacology
5. Gene therapy, and
6. Pharmacology of alcohol and drugs of abuse

The student is expected to begin independent research early in his or her training and to participate in an intensive program of research seminars. Close personal contact between preceptor and trainee is encouraged.

Research Facilities
Laboratory facilities and a variety of research equipment are available in the department, which is located primarily in the Genetic Medicine Building, where it occupies approximately 30,000 square feet (exclusive of classrooms and animal facilities). In addition, several faculty members are located in the Lineberger Comprehensive Cancer Center, the Thurston Bowles Alcohol Center, and the Neurosciences Building.

Assistantships and Other Student Aid
Financial assistance is provided to all students. The stipend for the 2016–2017 fiscal year was $29,000 per year. In addition, tuition, fees, and health insurance coverage are provided.

Requirements for Admission
All students in the basic science departments in the Medical School and the biological sciences divisions in biology and chemistry enter graduate school through the Biological and Biomedical Sciences Program (http://bbsp.unc.edu). During the first year students take courses and complete three rotations in laboratories from any of the participating departments or curricula.

After identifying a research mentor, if that faculty member is affiliated with the Pharmacology Department (http://www.med.unc.edu/pharm/people/primaryfaculty), students can choose to join the pharmacology graduate program. Once in the program, students complete required coursework and qualifying examinations, propose a research topic, choose a dissertation committee, and engage in dissertation research. The anticipated duration of training is five years.

The pharmacology graduate program is dedicated to the training of outstanding scientists in the pharmacological sciences. An outstanding graduate program is a high priority of the department, and the training faculty participate fully at all levels. The department has the highest level of NIH funding of all pharmacology departments and a great diversity of research areas is available to trainees. These areas include cell surface receptors, G proteins, protein kinases, and signal transduction mechanisms; neuropharmacology; nucleic acids, cancer, and antimicrobial pharmacology; and experimental therapeutics. Cell and molecular approaches are particularly strong, but systems-level research such as behavioral pharmacology and analysis of knock-in and knock-out mice is also well-represented. Excellent physical facilities are available for all research areas.

Students completing the training program will have acquired basic knowledge of pharmacology and related fields, in-depth knowledge in their dissertation research area, the ability to evaluate scientific literature, mastery of a variety of laboratory procedures, skill in planning and executing an important research project in pharmacology, and the ability to communicate results, analysis, and interpretation. These skills provide a sound basis for successful scientific careers in academia, government, or industry.

To apply to BBSP, students must use The Graduate School’s online application form (http://gradschool.unc.edu/admissions). They should read carefully the information for domestic or international applicants before beginning the application. For Question 2 of the application, applicants should scroll down to School of Medicine and select "Biological and Biomedical Sciences" from the dropdown list.

The following materials are required for an application to be considered complete:
1. Nonrefundable application fee (the department cannot review the application until this is paid)
2. Copies of each of the student’s transcripts
3. Letters of recommendation (submit online)
4. Personal statement (submit online)
5. GRE scores (must be less than five years old; UNC-Chapel Hill institution code is 5816)
6. TOEFL score (must be less than two years old and is necessary only if the student is an international applicant who does not have an undergraduate degree from a United States university)

For Graduate School information and submission of application materials, please consult the Graduate School Admissions Office Web site (http://gradschool.unc.edu/admissions).

For program information and submission of application materials, prospective applicants may write to the following address:

BBSP Admissions
130 Mason Farm Road
1125 Bioinformatics Bldg.
CB#7108
University of North Carolina
Chapel Hill, NC 27599-7108
Telephone: (919) 843-6960
Email: bbsp@unc.edu

The basic course requirements for the Ph.D. degree include introductory and advanced courses in pharmacology and related programs in accord with the principal interest of the students in molecular pharmacology, neuropharmacology, or toxicology. In addition, in order to satisfy the requirements of the department and The Graduate School, the student must pass written and oral doctoral examinations, write a dissertation
based on original research, and submit to a final oral examination. Under special circumstances the department will offer a program leading to the M.S. degree. The requirements are appropriate coursework, a written comprehensive examination, a thesis based on original research, and a final oral examination.

Following the faculty member’s name is a section number that students should use when registering for independent studies, reading, research, and thesis and dissertation courses with that particular professor.

Professors

Nancy Allbritton (136), Signaling in Single Cells and Microfabricated Systems for Cellular Analysis

George R. Breese (15), Drugs and Neural Plasticity, Molecular Neurobiology

James Bear, Cell Motility, Migration, and Cancer Metastasis

Frank C. Church (107), Proteases and Their Inhibitors Involved in Regulating Thrombosis and Tumor Cell Invasion

Adrienne D. Cox (90), Ras Family Oncogenes, Lipid Modification and Protein Function

Fulton T. Crews (88), Excitotoxicity, Gene Delivery, Neuroprogenetor Stem Cells and Addiction

Channing Der (74), Ras Protein Superfamily, Signal Transduction and Oncogenesis

Joseph Desimone (137), Polymer Synthesis, Liquid and Supercritical CO₂ Processing, Gene Therapy and Drug Delivery

H. Shelton Earp (63), Growth Regulation, Growth Factor and Protein Kinases

Timothy Elston (129), Mathematical Modeling of G-Protein and MAP Kinase Signaling

Lee M. Graves (89), Growth Factor-Mediated Signal Transduction

Klaus Hahn (126), Development of Fluorophores for Site-Specific Protein Labeling, Live Cell Biosensors and Their Biological Applications, Motility, Apoptosis, and Crosstalk in Signaling

Clyde Hodge (123), Molecular Mechanisms Mediating the Reinforcing/ Pleasurable Subjective Effects of Alcohol and Other Drugs

Gary L. Johnson (124), Receptors/G-Proteins, Defining the Signal Relay Systems Initiated by Various Cellular Stimuli (Including Cytokines), Growth Factors, Antigens, and Drugs Used to Treat Human Disease

Alan Jones (138), Heterotrimeric G-Protein Signaling in Model Systems

Rudolph L. Juliano (62), Membrane Biochemistry of Cell Interactions, Drug Delivery Systems

Terrance Kenakin, Drug Discovery and Development for Seven Transmembrane Receptors, Protein Allosteric Mechanisms/Signal Efficacy

David Lawrence (139), Chemical Biology of Signal Transduction

Nigel Mackman (150), Role of Tissue Factor in Hemostasis, Thrombosis and Ischemia-Reperfusion (I/R), Injury

William Maixner (64), Pain Research and Autonomic Nervous System Research

Ken D. McCarthy (42), Neuronalglial Interactions Studied in Situ Using Electrophysiology, Confocal Imaging and Conditional Knockouts

Leslie Morrow (105), Molecular Neuropharmacology of GABA Receptors and Alcohol

Robert A. Nicholas (68), G-Protein-Coupled P2Y Receptors, Mechanisms of Antibiotic Resistance

Leslie V. Parise (70), Adhesion Receptors and Signal Transduction in Platelets, Sickle Cell Disease, and Cancer

Bryan Roth (130), Regulation of Signal and Trafficking, Drug Discovery

Janet Rubin (142), Mechanical and Hormonal Control of Bone Remodeling, Mesenchymal Stem Cell Differentiation, and Osteoporosis

R. Jude Samulski (77), Development of Efficient Viral Vectors for Gene Delivery into Eukaryotic Genes

John Sondek (100), X-Ray Crystallography and Transmembrane Signaling

Juan Song (147), Adult Neurogenesis Function and Regulation

Yanping Zhang (143), Molecular Basis of Cancer

Associate Professors

Jean Cook (144), Regulation of DNA Replication in Mammalian Cells

J. Alex Duncan (145), Inflammation and Immune Response and Host Pathogen Interactions

David Eberland (148), Molecular Pathology and Genomics of Solid Tumors, Oncology Companion Diagnostics, Therapeutics for Personalized Medicine in Oncology Image Analysis of Tumors

Shawn Gomez (149), Computational Biology, Systems Biology, Cancer

Thomas Kash (134), Neuropsychological Alterations Underlying Dysregulated Emotional Behavior

Jen Jen Yeh (151), Gene Expression Profiling of Human Tumors; Study, Development, and Evaluation of Novel Therapeutics; Pancreatic and Colorectal Cancer

Zefeng Wang (131), Splicing Regulation and Modulation

William Zamboni (152), Application of Pharmacokinetic, Pharmacodynamics, and Pharmacogenetic Principles in the Optimization of the Chemotherapeutic Treatment of Cancer, Nanoparticle Drug Delivery

Qisheng Zhang (153), Lipid Signaling in Development and Disease

Assistant Professors

J. Mauro Calabrese (146), Epigenetic Control by Long Noncoding RNAs, Genomics, Stem Cells, Cancer, Human Genetic Disorders

Joseph Alex Duncan, Inflammation and Immune Response, Host Pathogen Interactions

Michael Emanuele (148), Cell Cycle, Mitosis, Protein Stability, Ubiquitin, Cancer, Genetics, Cell Biology

Brian Jensen (154), Transthoracic and Transesophageal Echocardiography, Heart Failure, Myocardial Biology, Adrenergic Receptor Biology

Jonathan C. Schister, Cardiovascular Genomics, Proteinopathies, and Cellular Metabolism in Neuronal and Cardiovascular Disease

Adjunct Professors

Cam Patterson (115), Angiogenesis, Vascular Biology Endothelium, Atherosclerosis

James W. Putney (84), Second Messenger Signaling

Robert L. Rosenberg (69), Regulation of Ion Channels

David Siderovski (111), Regulator of G-Protein Signaling (RGS), Family of Proteins

Adjunct Associate Professors

Kenneth S. Korach (85), Biochemistry and Biology of Steroid Hormone Receptors

Sommath Mukhopadhyay (143), Cannabinoid and G-Protein Coupled Receptor-Mediated Regulation of Neurogenesis and Angiogenesis

Professors Emeriti

Kenneth H. Dudley

Barry Goz

T. Kendall Harden
PHCO

Advanced Undergraduate and Graduate-level Courses

PHCO 643. Cell Structure, Function, and Growth Control I. 3 Credits.
Comprehensive introduction to cell structure, function, and transformation.
Requisites: Prerequisite, undergraduate cell biology or biochemistry or permission of the instructor.
Grading status: Letter grade
Same as: CBIO 643, BIOC 643, PHYI 643.

Graduate-level Courses

PHCO 701. Introduction to Molecular Pharmacology. 3 Credits.
Permission of the instructor. A first-year pharmacology course outlining the basics of molecular pharmacology, including molecular biology, drug and receptor interactions, receptors and ion channels, regulation of second messengers, and drug metabolism. Three lecture hours a week.

PHCO 702. Principles of Pharmacology and Physiology. 3 Credits.
Introduces students to the major areas of pharmacology and physiology and serves as a basis for more advanced courses. Three lecture hours a week.
Requisites: Prerequisite, CHEM 430; permission of the instructor for students lacking the prerequisite.
Same as: TOXC 702.

PHCO 705. Behavioral Pharmacology. 3 Credits.
Basic principles of pharmacology and behavior analysis are considered in relation to drugs that affect the central nervous system.
Requisites: Prerequisite, PSYC 404; permission of the instructor for students lacking the prerequisite.
Same as: PSYC 705, NBIO 705.

PHCO 707. Advanced Toxicology. 3 Credits.
Cellular and physiological basis of toxicity of environmental chemicals, with emphasis on inhalation toxicology, developmental toxicology, immunotoxicology, radiation toxicology, renal toxicology, and neurotoxicology. Three lecture hours per week.
Requisites: Prerequisite, PHCO 702; permission of the instructor for students lacking the prerequisite.
Same as: TOXC 707, ENVR 707.

PHCO 710. Cell Membranes. 2 Credits.

PHCO 715. The Molecular Pharmacology of Cancer. 2 Credits.
Required preparation, advanced graduate or advanced undergraduate courses in biochemistry and molecular biology. This course deals with the molecular and cellular basis of anticancer and antiviral chemotherapy, with emphasis on novel approaches including immunotherapy, antisense oligonucleotides, and gene therapy. The course includes faculty lectures and student presentations.

PHCO 721. Seminar Courses in Pharmacology. 1-3 Credits.
This is a series of seminar courses dealing with advanced topics in modern molecular pharmacology based mainly on discussion of current literature.

PHCO 722. Cellular and Molecular Neurobiology I. 2-6 Credits.
Lecture/discussion course on the physiology, pharmacology, biochemistry, and molecular biology of the nervous system. Topics include function and structure of ion channels, neurotransmitter biosynthesis and release mechanisms, neurotransmitter receptors, and intracellular signaling pathways.

PHCO 722A. Cellular and Molecular Neurobiology: Introduction and Electrical Signaling. 2 Credits.
Permission of the department. Introduces topics as brain cell biology, molecular biology applied to neurons, membrane potentials and imaging methods. The second half of this block introduces such topics as resistance, capacitance, passive membranes, classes of ion channels, potassium and calcium channels, and action potential initiation.
Same as: NBIO 722A, BIOC 722A.

PHCO 722B. Cellular and Molecular Neurobiology: Postsynaptic Mechanisms-Receptors. 2 Credits.
Permission of the department. Consideration of membrane receptor molecules activated by neurotransmitters in the nervous system with emphasis on ligand binding behavior and molecular and functional properties of different classes of receptors. Course meets for four weeks with six lecture hours per week.
Same as: NBIO 722B, BIOC 722B.

PHCO 722C. Cellular and Molecular Neurobiology: Synaptic Transmissions. 2 Credits.
Permission of the department. This block focuses on neurotransmitter signaling through distinct receptor subclasses. Topics include G-protein coupled receptors and associated signaling, receptor binding theory, ionotropic and metabotropic glutamate and GABA receptors, receptor trafficking and localization. Course meets for five weeks with six lecture hours per week.
Same as: NBIO 722C, BIOC 722C.

PHCO 723A. Cellular and Molecular Neurobiology: Development of the Nervous System. 2 Credits.
Permission of the department. This block covers neural induction, neural stem cells, glial development, neural cell death and neurotrophin during development, and synaptic adhesion molecules.
Same as: NBIO 723A, BIOC 723A.

PHCO 723B. Cellular and Molecular Neurobiology: Anatomy and Function of Sensory and Motor Systems. 2 Credits.
Permission of the department. This block introduces the sensory pathways of vision, audition, taste, olfaction, pain, and touch, as well as the motor pathways of the spinal cord, basal ganglia, cerebellum, and motor cortex. Discusses mechanisms of sensory information processing and motor execution. Includes peripheral and central mechanisms of pain.
Same as: NBIO 723B, BIOC 723B.

PHCO 724. Ras Superfamily Proteins and Signal Transduction. 2 Credits.
Seminar/discussion course covering recent advances in the role of these proteins in signaling and growth.

PHCO 725. Signal Transduction. 2 Credits.
Seminar/discussion course on molecular aspects of the receptors, G-proteins, effector proteins, kinases, and phosphatases that mediate hormone, neurotransmitter, growth factor, and sensory signaling.
Same as: BIOC 725.
PHCO 726. Adhesion Receptors and Signaling in Cancer and CV Disease. 2 Credits.
Examines the growing number of families of cell adhesion receptors and their role in biological processes including signal transduction, control of gene expression, hemostasis, cancer, neuronal development, immunobiology, and embryologic development.

PHCO 727. Structure and Function of Ion Channels. 2 Credits.
Seminar/discussion course on the physiology, pharmacology, biochemistry, and molecular biology of ion channel proteins.

PHCO 728. Neuropharmacology of Alcohol and Substance Abuse. 3 Credits.
A lecture/discussion course on the biological bases of alcohol and substance abuse.

A seminar/discussion course on recent advances in targeted gene delivery and gene therapy.

PHCO 730. Seminar in Recent Advances in Pharmacology. 1 Credit.
Students meet as a group with faculty members to develop skills in critical reading and to summarize and discuss selected aspects of current pharmacological literature. Two hours a week. Fall and spring.

PHCO 731. Recent Advances in the Pharmacological Sciences. 1 Credit.
This graduate-level course encompasses both seminars presented by distinguished faculty from UNC, Duke, and other high-level research institutions, and seminars presented by students in the Pharmacological Sciences Training Program (PSTP) to other PSTP students and faculty. Students are required to attend at least 80% of these seminars each semester.
Repeat rules: May be repeated for credit.

PHCO 732. Grant Writing. 2 Credits.
A discussion course covering the elements of successful grant proposals and scientific ethics.
Requisites: Prerequisite, PHCO 701; Permission of the instructor for students lacking the prerequisite.

PHCO 733. Drug Discovery and Development. 2 Credits.
A seminar/discussion course on the research, development, and regulatory processes involved in bringing new drugs to clinical use.

PHCO 734. Pain and Analgesia. 2 Credits.
A lecture/discussion course on pain transmission and pain measurement. The neuropharmacological basis of pain modulation will be discussed.

PHCO 735. Discovery Biology and Pharmacogenomics. 2 Credits.
Lecture/discussion course covering a variety of aspects of new biological and computational technologies. The course is predominantly in a lecture format with computer-based and literature assignments.

PHCO 736. Protein Kinases as Targets for Novel Pharmacological Inhibitors. 2 Credits.
A seminar/discussion course to evaluate the use of small molecule inhibitors of protein kinases from a structural and signal transduction perspective.

PHCO 737. Target-Based Drug Discovery and Cancer Treatment. 2 Credits.
A lecture/discussion course that emphasizes preclinical and clinical studies for the development of anti-cancer drugs that target signal transduction. Topics include: target identification and validation, drug discovery, the process of government approval for clinical trials, design of clinical trials, and new genetic-based technologies to foster drug development.

PHCO 738. Nanomedicine. 2 Credits.
This course offers an introduction to the nascent interdisciplinary field of nanomedicine for students with physical/biological science backgrounds; course will be based on student led discussions of current literature.
Requisites: Prerequisite, completion of undergraduate major in physical or biological science or permission of the instructor.

PHCO 739. Reprogramming of Somatic and Stem Cells and Its Applications in Pharmacology. 2 Credits.
The objective of this new elective is to provide graduate students with an overview of stem cell biology with a unique emphasis on the applications of stem cells in pharmacology, particularly in areas of cancer and tissue regeneration.

PHCO 740. Contemporary Topics in Cell Signaling: Phosphorylation Control. 1 Credit.
Required preparation, coursework in biochemistry, pharmacology and/or cell & molecular biology. Permission of the instructor. This graduate-level course is an in-depth analysis of how protein kinases and protein phosphorylation regulates key aspects of cell signaling. This class is one of the "Contemporary Topics in Cell Signaling" modules.

PHCO 741. Contemporary Topics in Cell Signaling: GTPases. 1 Credit.
Required preparation, coursework in biochemistry, pharmacology, and/or cell & molecular biology. Permission of the instructor. This graduate-level course conveys principles of signal transduction controlled by GTPases and emphasizes in-depth discussion of current literature and unanswered questions. This class is one of the "Contemporary Topics in Cell Signaling" modules.

PHCO 742. Contemporary Topics in Cell Signaling: Cell Cycle Control. 1 Credit.
Permission of the instructor. Required preparation, coursework in biochemistry and/or cell & molecular biology. This graduate-level course conveys principles of eukaryotic cell proliferation control emphasizing in-depth discussion of current literature and unanswered questions. This class is one of the "Contemporary Topics in Cell Signaling" modules.

PHCO 743. Contemporary Topics in Cell Signaling: Signaling Networks. 1 Credit.
Acquire the scientific vocabulary of the signaling network field. Master key concepts from mathematical characterization of signaling circuits. Develop and apply critical analysis skills.
Same as: BIOC 743.

PHCO 744. Topics on Stem Cells and Development. 1 Credit.
Required preparation, coursework in genetics, cell biology, and molecular biology. Permission of the instructor. Course addresses key issues in developmental biology focused on the role of stem cells and emphasizes in-depth discussion of current literature and unanswered questions. One of the Contemporary Topics in Cell Signaling modules.
Same as: BIOC 744.

PHCO 745. Intercellular Signaling in Development and Disease. 1 Credit.
This graduate-level course concentrates on up-to-date views of intercellular signal processing, with emphasis on signal transduction mechanisms as they relate to cellular/physiological responses in both normal development and disease. Signaling mechanisms that will be discussed include autocrine, paracrine, juxtacrine signaling and cell-matrix interactions.
Same as: BIOC 745.
PHCO 746. Introduction to Computer Vision Tools for Modern Microscopy. 1 Credit.
This course will introduce computer vision methods for cell biology. Each topic will be motivated with an explanation of a computational challenge, followed by a discussion of available techniques to address the need and practical examples for how to apply the techniques.

PHCO 747. Biological Concepts. 1.5 Credit.
Overview of structures and biological determinants of conditions and diseases of the oral cavity. Both growth and development and pathophysiology will be introduced in the context of three areas of oral biology: biology of extracellular matrices, host-pathogens interactions, and orofacial neurobiology.
Same as: OBIO 732, NBIO 732.

PHCO 748. Translational Pain Medicine. 1.5 Credit.
This is a clinician-taught course that advances students' understanding of chronic pain (e.g., head/face pain, pelvic pain, back pain, cancer pain, surgical pain) in both the classroom and the clinic.
Requisites: Prerequisite, OBIO 732; Permission of the instructor for students lacking the prerequisite.
Same as: OBIO 733.

PHCO 749. Practical RNA-Seq. 2 Credits.
This course is designed to familiarize students with everything needed to run an RNA-Seq experiment. There will be minimal emphasis on theory and heavy focus on practical aspects. There are no formal prerequisites required for this course and no prior experience with UNIX or the command line interface is expected.
Same as: GNET 749.

PHCO 850. Seminar in Neurobiology. 3 Credits.
Permission of the department. An intensive consideration of selected topics and problems in neurobiology. The course focuses on the development of presentation and evaluation skills of the trainees. Six credit hours required for neurobiology graduates.
Same as: NBIO 850, BIOL 850.

PHCO 900. Special Pharmacology Research. 3-6 Credits.

PHCO 901. Research in Pharmacology. 1-15 Credits.
Permission of the department.

PHCO 951. Research in Neurobiology. 3-12 Credits.
Permission of the department. Research in various aspects of neurobiology. Six to 24 hours a week.
Same as: NBIO 951, BIOL 951.

PHCO 989. Special Pharmacology Research. 3-6 Credits.

PHCO 993. Master's Research and Thesis. 3 Credits.
Permission of the department.
Repeat rules: May be repeated for credit.

PHCO 994. Doctoral Research and Dissertation. 3 Credits.
Permission of the department.
Repeat rules: May be repeated for credit.