The Department of Applied Physical Sciences at the University of North Carolina at Chapel Hill is an interdisciplinary graduate program that brings together faculty members from chemistry, mathematics, physics and astronomy, and various departments across the University to engage in research and training in applications of the physical sciences. The primary areas of emphasis in the program are optical and electronic materials, nanomaterials, polymers, and biomaterials. Students pursuing M.S. and Ph.D. degrees in materials science begin their studies with a core curriculum covering the fundamentals of materials, including their structures, surfaces, fabrication, thermodynamics, and materials science laboratory techniques. They continue with elective courses offered by the curriculum or the other departments as appropriate to their area of research concentration. Graduate students engage in research under the supervision of one of the participating materials science faculty in the Department of Applied Physical Sciences.

Research Interests
The four areas of research emphasized in the program are electronic, nano, polymer, and biomaterials. These four areas are not discrete, however, as research projects in electronic polymers, nonlinear optics of polypeptides on surfaces, liquid crystals, and wear in polyethylene artificial joints demonstrate. Individual faculty members may have research interests in more than one of the primary areas, and may collaborate with others to address all four. For detailed information on the graduate program, please consult the Web site (g-admit-apsc@unc.edu) or call the graduate student coordinator at 919-962-4703.

Facilities and Equipment
Students and faculty members in the curriculum have access to the following central facilities located in various departments: NMR (2), computer modeling and computer graphics, confocal microscopy, electron microscopy (SEM, TEM, and STEM), FIB, glass shop, machine shop (2), laser lab, mechanical testing, mass spectroscopy, and X-ray diffraction. In addition, a variety of equipment is located in individual research laboratories. This includes equipment for thermal analysis; polymer synthesis; FTIR, UV-Vis, Raman, and photoluminescence spectroscopy; ellipsometry; CVD; MBE; thermal oxidation; AFM; electrical measurements; nonlinear optics; and low temperatures and high pressures. Facilities at North Carolina State University in Raleigh and MCNC in Research Triangle Park are also available.

Fellowships and Assistantships
Teaching assistantships are available to qualified graduate students. The duties of teaching assistants include teaching laboratory sections, assisting in the supervision of advanced laboratories, teaching recitation sections, and grading papers. Summer support is generally available. Research assistantships are also offered.

Degree Requirements
The Ph.D. degree requirements include completion of a suitable set of courses, cumulative written comprehensive exams, a preliminary doctoral oral exam, an original research project culminating in a dissertation, and a final oral exam. The M.S. degree requirements include completion of a suitable set of courses, cumulative written comprehensive exams, a research project, and a final oral exam. The general regulations of The Graduate School govern credit hour, residency, and examination requirements.

Courses
All graduate students must pass the following courses or appropriate ones approved by the curriculum, or must have passed their equivalents elsewhere:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>APLL 470</td>
<td>Fundamentals of Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>APLL 497</td>
<td>Chemistry and Physics of Surfaces</td>
<td>3</td>
</tr>
<tr>
<td>MTSC 615</td>
<td>Structure of Solids</td>
<td>3</td>
</tr>
<tr>
<td>MTSC 720</td>
<td>Materials Fabrication</td>
<td>3</td>
</tr>
<tr>
<td>MTSC 730</td>
<td>Statistical Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MTSC 735</td>
<td>Techniques in Materials Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Each student also takes additional courses offered by the curriculum or participating departments, as appropriate for his or her area of study.

Comprehensive Exam
M.S. students must pass three core exams and one specialty exam. Ph.D. students must pass four core exams and two specialty comprehensive exams. Topics for the specialty exams will be research areas represented in the materials science program at UNC-Chapel Hill; core exams cover the fundamental knowledge of materials science. All students are required to complete the comprehensive exam by the end of their second year.

Preliminary Doctoral Oral Exam
Students are required to select a research adviser during the first year in graduate school and a thesis committee before they take the preliminary doctoral exam. To pass the preliminary doctoral oral exam, students must present to the dissertation committee and successfully defend their Ph.D. research proposal by the end of the third year.

Professors
Joseph M. DeSimone (Chemistry), Polymeric Materials Synthesis
Theo J. Dingemans (APS), High-Performance Polymers
Jinsong Huang (APS), Materials for Solar Conversion
Thomas Meyer (Chemistry - APS), Inorganic Chemistry, Solar Energy Conversion and Artificial Photosynthesis
Peter Mucha (Mathematics), Complex Systems, Networks, Complex Fluids
J. Michael Ramsey (Chemistry), Analytical Chemistry, Microfabricated Chemical Instrumentation, Microfluidics, Nanofluidics
Edward T. Samulski (Chemistry - APS), Liquid Crystals and Liquid Crystal Polymers
Richard Superfine (Physics and Astronomy - APS), Interfacial Ordering of Molecules
Sean Washburn (Physics and Astronomy - APS), Quantum Transport, Mechanical and Electrical Response of Nanostructures.

Associate Professors
Rene Lopez (Physics and Astronomy - APS), Optical Materials, Photonic Structures, Photovoltaics
Wei You (Chemistry - APS), Organic and Polymer Synthesis, Organic Solar Cells, Molecular Electronics, Organic Spintronics

Assistant Professors
Scott Warren (Chemistry - APS), Supramolecular and Solid-State Chemistry for Materials Design
Daphne Klotsa (APS), Active Matter
Ehsan Nazockdast (APS), Modeling/Simulation of Biophysical Phenomena

Affiliated Faculty
Nancy L. Albritton (BME and Chemistry), Signaling in Single Cells, Microfabricated Systems for Cellular Analysis
James Cahoon (Chemistry), Nanoparticle Synthesis and Characterization
Jianping Lu (Physics and Astronomy), Theoretical Studies of Materials
Laurie E. McNeil (Physics and Astronomy), Structure-Property Relations, Optical Spectroscopy
Jerry Meyer (Chemistry), New Materials for Energy Conversion
Lu-Chang Qin (Physics and Astronomy), Synthesis and Structure of Nanomaterials
Michael Rubinstein (Chemistry), Molecular Models of Polymers
Sergei S. Sheiko (Chemistry), Dynamics of Single Molecule on a Surface
Frank Tsui (Physics and Astronomy), Synthesis of Artificially Structured Materials
Yue Wu (Physics and Astronomy), Quasicrystals, Nanocrystals, Nanotubes and Molecular Motion in Polymers
Otto Zhou (Physics and Astronomy), Synthesis, Properties and Applications of Nanomaterials

APPL
Advanced Undergraduate and Graduate-level Courses

APPL 420. Introduction to Polymer Chemistry. 3 Credits.
Chemical structure and nomenclature of macromolecules, synthesis of polymers, characteristic polymer properties.
Requisites: Prerequisite, CHEM 261 or 261H; pre- or corequisites, CHEM 262 or 262H, and 262L or 263L.
Grading status: Letter grade
Same as: CHEM 420.

APPL 421. Synthesis of Polymers. 3 Credits.
Synthesis and reactions of polymers; various polymerization techniques.
Requisites: Prerequisites, CHEM 251 and 262 or 262H.
Grading status: Letter grade
Same as: CHEM 421.

APPL 422. Physical Chemistry of Polymers. 3 Credits.
Polymerization and characterization of macromolecules in solution.
Requisites: Prerequisites, CHEM 420 and 481.
Grading status: Letter grade
Same as: CHEM 422.

APPL 423. Intermediate Polymer Chemistry. 3 Credits.
Polymer dynamics, networks and gels.
Requisites: Prerequisite, CHEM 422.
Grading status: Letter grade
Same as: CHEM 423.

APPL 470. Fundamentals of Materials Science. 3 Credits.
Prerequisite, CHEM 482; or Crystal geometry, diffusion in solids, mechanical properties of solids, electrical conduction in solids, thermal properties of materials, phase equilibria.
Requisites: prerequisite, PHYS 128 and pre- or corequisite, PHYS 441.
Grading status: Letter grade
Same as: CHEM 470.

APPL 472. Chemistry and Physics of Electronic Materials Processing. 3 Credits.
Permission of the instructor. A survey of materials processing and characterization used in fabricating microelectronic devices. Crystal growth, thin film deposition and etching, and microlithography.
Requisites: Prerequisite, CHEM 482 or PHYS 117 or 119.
Grading status: Letter grade
Same as: PHYS 472, CHEM 472.

APPL 473. Chemistry and Physics of Surfaces. 3 Credits.
The structural and energetic nature of surface states and sites, experimental surface measurements, reactions on surfaces including bonding to surfaces and adsorption, interfaces.
Requisites: Prerequisite, CHEM 470.
Grading status: Letter grade
Same as: CHEM 473.

APPL 490. Special Topics. 3 Credits.
Topics vary from semester to semester.
Repeat rules: May be repeated for credit; may be repeated in the same term for different topics; 12 total credits. 4 total completions.
Grading status: Letter grade.

APPL 491L. Materials Laboratory I. 2 Credits.
Structure determination and measurement of the optical, electrical, and magnetic properties of solids.
Requisites: Prerequisites, APPL 470 and PHYS 351.
Grading status: Letter grade
Same as: PHYS 491L.

APPL 492L. Materials Laboratory II. 2 Credits.
Continuation of PHYS 491L with emphasis on low- and high-temperature behavior, the physical and chemical behavior of lattice imperfections and amorphous materials, and the nature of radiation damage.
Requisites: Prerequisite, APPL 491L or PHYS 491L.
Grading status: Letter grade
Same as: PHYS 492L.

APPL 520L. Polymer Chemistry Laboratory. 2 Credits.
Various polymerization techniques and characterization methods. One four-hour laboratory each week.
Requisites: Pre- or corequisite, CHEM 420 or 421 or 425.
Grading status: Letter grade
Same as: CHEM 520L.
APPL 573. Introductory Solid State Physics. 3 Credits.
Crystal symmetry, types of crystalline solids; electron and mechanical waves in crystals, electrical and magnetic properties of solids, semiconductors; low temperature phenomena; imperfections in nearly perfect crystals.
Requisites: Prerequisite, PHYS 321; permission of the instructor for students lacking the prerequisite.
Grading status: Letter grade
Same as: PHYS 573.

MTSC

Advanced Undergraduate and Graduate-level Courses

MTSC 615. Structure of Solids. 3 Credits.
Crystallography, reciprocal lattices, Bloch waves, band structure, electronic wave functions, phonons, thermal expansion. Superlattice structures, including liquid crystals. Overview of properties of ceramic, amorphous, polymeric, and composite materials.
Grade status: Letter grade.

Graduate-level Courses

MTSC 715. Visualization in the Sciences. 3 Credits.
Computational visualization applied in the natural sciences. For both computer science and natural science students. Available techniques and their characteristics, based on human perception, using software visualization toolkits. Project course.
Same as: COMP 715, PHYS 715.

MTSC 720. Materials Fabrication. 3 Credits.
Permission of the department. Introduction to materials fabrication and characterization techniques. Includes single crystal growth, thin film deposition, synthesis of quantum dots and nanotubes/nanowires, dielectric and electron emissive materials, nanocomposites, bioceramics, and energy storage materials.

MTSC 730. Statistical Thermodynamics. 3 Credits.

MTSC 735. Techniques in Materials Science. 3 Credits.
Permission of the department. Lecture and laboratory in materials analysis techniques, including microscopy, X-ray diffraction and fluorescence, magnetic resonance, thermal analysis, XPS, channeling and RBS, mechanical properties, optical spectroscopy.
Repeat rules: May be repeated for credit.

MTSC 740. Advanced Biomaterials. 3 Credits.
Medical or dental implants or explants are highlighted from textbooks, scientific literature, and personal accounts.
Requisites: Prerequisite, BMME 510; permission of the instructor for students lacking the prerequisite.
Same as: BMME 740.

MTSC 750. Kinetics, Diffusion, and Phase Transitions of Materials. 3 Credits.

MTSC 810. Device Physics and Electronic Properties of Solids. 3 Credits.
Survey of crystal structure, bandstructure, transport. Overview of FETs, heterostructures, light emission, dissipation, noise, integrated circuits, solar cells, and ceramics. Emphasis on physical sources of device behavior.
Requisites: Prerequisites, APPL 470 or PHYS 573, MTSC 615, and 730; permission of the instructor for students lacking the prerequisites.

MTSC 820. Optical Properties of Solids. 3 Credits.
Reflection, waveguides, nonlinear optics, optical switching, photorefractive, optical storage. Optical coupling to electronic states, device applications, optical computing.
Requisites: Prerequisites, APPL 470 or PHYS 573, and PHYS 415; permission of the instructor for students lacking the prerequisite.

MTSC 830. Ion-Solid Interactions. 3 Credits.
Interatomic potentials, range distribution, radiation damage, annealing, secondary defects, analytical techniques, silicon-based devices, implantation in compound semiconductors, and buried layer synthesis. Ion implantation in metals, ceramics, polymers, and biomaterials.
Requisites: Prerequisite, APPL 470 or PHYS 573; permission of the instructor for students lacking the prerequisite.

MTSC 840. New Technologies and Device Architecture. 3 Credits.
Requisites: Prerequisites, APPL 470 or PHYS 573, MTSC 615, and 730; permission of the instructor for students lacking the prerequisite.

MTSC 871. Solid State Physics. 3 Credits.
Equivalent experience for students lacking the prerequisite. Topics considered include those of PHYS 573, but at a more advanced level, and in addition a detailed discussion of the interaction of waves (electromagnetic, elastic, and electron waves) with periodic structures, e.g., X-ray diffraction, phonons, band theory of metals and semiconductors.
Requisites: Prerequisite, PHYS 573.
Same as: PHYS 871.

MTSC 872. Solid State Physics. 3 Credits.
Topics considered include those of PHYS 573, but at a more advanced level, and in addition a detailed discussion of the interaction of waves (electromagnetic, elastic, and electron waves) with periodic structures, e.g., X-ray diffraction, phonons, band theory of metals and semiconductors.
Requisites: Prerequisite, PHYS 573.
Same as: PHYS 872.

MTSC 879. Special Topics in Material Science. 1-3 Credits.
Permission of the department. Current topics in materials science, including electronic and optical materials, polymers, and biomaterials.

MTSC 992. Master's (Non-Thesis). 3 Credits.

MTSC 993. Master's Research and Thesis. 3 Credits.
Permission of the department.
Repeat rules: May be repeated for credit.

MTSC 994. Doctoral Research and Dissertation. 3 Credits.
Permission of the department.
Repeat rules: May be repeated for credit.