PHARMACOLOGY (PHCO)

PHCO 154. PRINC PHCO/TOXICOL. 2 Credits.

PHCO 155. General Pharmacology. 2.5 Credits.
All preceding courses in chemistry, biology, bacteriology, and physiology in the Pharmacy School curriculum or their equivalent. A course for pharmacy students. Drug pharmacodynamics of major drug classes and organ systems will be stressed.
Grading status: Letter grade.

PHCO 156. General Pharmacology. 1.5 Credit.
A course for pharmacy students. Drug pharmacodynamics of major drug classes and organ systems will be stressed.
Grading status: Letter grade.

PHCO 158. FUND OF DRUG ACTION. 3 Credits.

PHCO 643. Cell Structure, Function, and Growth Control I. 3 Credits.
Comprehensive introduction to cell structure, function, and transformation.
Requisites: Prerequisite, undergraduate cell biology or biochemistry or permission of the instructor.
Grading status: Letter grade
Same as: CBIO 643, BIOC 643, PHYI 643.

PHCO 701. Introduction to Molecular Pharmacology. 3 Credits.
Permission of the instructor. A first-year pharmacology course outlining the basics of molecular pharmacology, drug and receptor interactions, receptors and ion channels, regulation of second messengers, and drug metabolism. Three lecture hours a week.

PHCO 702. Principles of Pharmacology and Physiology. 3 Credits.
Introduces students to the major areas of pharmacology and physiology and serves as a basis for more advanced courses. Three lecture hours a week.
Requisites: Prerequisite, CHEM 430; permission of the instructor for students lacking the prerequisite.
Same as: TOXC 702.

PHCO 705. Behavioral Pharmacology. 3 Credits.
Basic principles of pharmacology and behavior analysis are considered in relation to drugs that affect the central nervous system.
Requisites: Prerequisite, PSYC 404; permission of the instructor for students lacking the prerequisite.
Same as: PSYC 705, NBIO 705.

PHCO 707. Advanced Toxicology. 3 Credits.
Cellular and physiological basis of toxicity of environmental chemicals, with emphasis on inhalation toxicology, developmental toxicology, immunotoxicology, radiation toxicology, renal toxicology, and neurotoxicology. Three lecture hours per week.
Requisites: Prerequisite, PHCO 702; permission of the instructor for students lacking the prerequisite.
Same as: TOXC 707, ENVR 707.

PHCO 710. Cell Membranes. 2 Credits.

PHCO 715. The Molecular Pharmacology of Cancer. 2 Credits.
Required preparation, advanced graduate or advanced undergraduate courses in biochemistry and molecular biology. This course deals with the molecular and cellular basis of anticancer and antiviral chemotherapy, with emphasis on novel approaches including immunotherapy, antisense oligonucleotides, and gene therapy. The course includes faculty lectures and student presentations.

PHCO 721. Seminar Courses in Pharmacology. 1-3 Credits.
This is a series of seminar courses dealing with advanced topics in modern molecular pharmacology based mainly on discussion of current literature.

PHCO 722. Cellular and Molecular Neurobiology I. 2-6 Credits.
Lecture/discussion course on the physiology, pharmacology, biochemistry, and molecular biology of the nervous system. Topics include function and structure of ion channels, neurotransmitter biosynthesis and release mechanisms, neurotransmitter receptors, and intracellular signaling pathways.

PHCO 722A. Cellular and Molecular Neurobiology: Introduction and Electrical Signaling. 2 Credits.
Permission of the department. Introduces topics as brain cell biology, molecular biology applied to neurons, membrane potentials and imaging methods. The second half of this block introduces such topics as resistance, capacitance, passive membranes, classes of ion channels, potassium and calcium channels, and action potential initiation.
Same as: NBIO 722A, BIOC 722A.

PHCO 722B. Cellular and Molecular Neurobiology: Postsynaptic Mechanisms-Receptors. 2 Credits.
Permission of the department. Consideration of membrane receptor molecules activated by neurotransmitters in the nervous system with emphasis on ligand binding behavior and molecular and functional properties of different classes of receptors. Course meets for four weeks with six lecture hours per week.
Same as: NBIO 722B, BIOC 722B.

PHCO 722C. Cellular and Molecular Neurobiology: Synaptic Transmissions. 2 Credits.
Permission of the department. This block focuses on neurotransmitter signaling through distinct receptor subclasses. Topics include G-protein coupled receptors and associated signaling, receptor binding theory, ionotropic and metabotropic glutamate and GABA receptors, receptor trafficking and localization. Course meets for five weeks with six lecture hours per week.
Same as: NBIO 722C, BIOC 722C.

PHCO 723A. Cellular and Molecular Neurobiology: Development of the Nervous System. 2 Credits.
Permission of the department. This block covers neural induction, neural stem cells, glial development, neural cell death and neurotrophin during development, and synaptic adhesion molecules.
Same as: NBIO 723A, BIOC 723A.

PHCO 723B. Cellular and Molecular Neurobiology: Anatomy and Function of Sensory and Motor Systems. 2 Credits.
Permission of the department. This block introduces the sensory pathways of vision, audition, taste, olfaction, pain, and touch, as well as the motor pathways of the spinal cord, basal ganglia, cerebellum, and motor cortex. Discusses mechanisms of sensory information processing and motor execution. Includes peripheral and central mechanisms of pain.
Same as: NBIO 723B, BIOC 723B.

PHCO 724. Ras Superfamily Proteins and Signal Transduction. 2 Credits.
Seminar/discussion course covering recent advances in the role of these proteins in signaling and growth.

PHCO 725. Signal Transduction. 2 Credits.
Seminar/discussion course on molecular aspects of the receptors, G-proteins, effector proteins, kinases, and phosphatases that mediate hormone, neurotransmitter, growth factor, and sensory signaling.
Same as: BIOC 725.
PHCO 726. Adhesion Receptors and Signaling in Cancer and CV Disease. 2 Credits.
Examines the growing number of families of cell adhesion receptors and their role in biological processes including signal transduction, control of gene expression, hemostasis, cancer, neuronal development, immunobiology, and embryologic development.

PHCO 727. Structure and Function of Ion Channels. 2 Credits.
Seminar/discussion course on the physiology, pharmacology, biochemistry, and molecular biology of ion channel proteins.

PHCO 728. Neuropharmacology of Alcohol and Substance Abuse. 3 Credits.
A lecture/discussion course on the biological bases of alcohol and substance abuse.

A seminar/discussion course on recent advances in targeted gene delivery and gene therapy.

PHCO 730. Seminar in Recent Advances in Pharmacology. 1 Credit.
Students meet as a group with faculty members to develop skills in critical reading and to summarize and discuss selected aspects of current pharmacological literature. Two hours a week. Fall and spring.

PHCO 731. Recent Advances in the Pharmacological Sciences. 1 Credit.
This graduate-level course encompasses both seminars presented by distinguished faculty from UNC, Duke, and other high-level research institutions, and seminars presented by students in the Pharmacological Sciences Training Program (PSTP) to other PSTP students and faculty. Students are required to attend at least 80% of these seminars each semester.

Repeat rules: May be repeated for credit.

PHCO 732. Grant Writing. 2 Credits.
A discussion course covering the elements of successful grant proposals and scientific ethics.

Requisites: Prerequisite, PHCO 701; Permission of the instructor for students lacking the prerequisite.

PHCO 733. Drug Discovery and Development. 2 Credits.
A seminar/discussion course on the research, development, and regulatory processes involved in bringing new drugs to clinical use.

PHCO 734. Pain and Analgesia. 2 Credits.
A lecture/discussion course on pain transmission and pain measurement. The neuropharmacological basis of pain modulation will be discussed.

PHCO 735. Discovery Biology and Pharmacogenomics. 2 Credits.
Lecture/discussion course covering a variety of aspects of new biological and computational technologies. The course is predominantly in a lecture format with computer-based and literature assignments.

PHCO 736. Protein Kinases as Targets for Novel Pharmacological Inhibitors. 2 Credits.
A seminar/discussion course to evaluate the use of small molecule inhibitors of protein kinases from a structural and signal transduction perspective.

PHCO 737. Target-Based Drug Discovery and Cancer Treatment. 2 Credits.
A lecture/discussion course that emphasizes preclinical and clinical studies for the development of anti-cancer drugs that target signal transduction. Topics include: target identification and validation, drug discovery, the process of government approval for clinical trials, design of clinical trials, and new genetic-based technologies to foster drug development.

PHCO 738. Nanomedicine. 2 Credits.
This course offers an introduction to the nascent interdisciplinary field of nanomedicine for students with physical/biological science backgrounds; course will be based on student led discussions of current literature.

Requisites: Prerequisite, completion of undergraduate major in physical or biological science or permission of the instructor.

PHCO 739. Reprogramming of Somatic and Stem Cells and Its Applications in Pharmacology. 2 Credits.
The objective of this new elective is to provide graduate students with an overview of stem cell biology with a unique emphasis on the applications of stem cells in pharmacology, particularly in areas of cancer and tissue regeneration.

PHCO 740. Contemporary Topics in Cell Signaling: Phosphorylation Control. 1 Credit.
Required preparation, coursework in biochemistry, pharmacology and/or cell & molecular biology. Permission of the instructor. This graduate-level course is an in-depth analysis of how protein kinases and protein phosphorylation regulates key aspects of cell signaling. This class is one of the "Contemporary Topics in Cell Signaling" modules.

PHCO 741. Contemporary Topics in Cell Signaling: GTPases. 1 Credit.
Required preparation, coursework in biochemistry, pharmacology, and/or cell & molecular biology. Permission of the instructor. This graduate-level course conveys principles of signal transduction controlled by GTPases and emphasizes in-depth discussion of current literature and unanswered questions. This class is one of the "Contemporary Topics in Cell Signaling" modules.

PHCO 742. Contemporary Topics in Cell Signaling: Cell Cycle Control. 1 Credit.
Permission of the instructor. Required preparation, coursework in biochemistry and/or cell & molecular biology. This graduate-level course conveys principles of eukaryotic cell proliferation control emphasizing in-depth discussion of current literature and unanswered questions. This class is one of the "Contemporary Topics in Cell Signaling" modules.

PHCO 743. Contemporary Topics in Cell Signaling: Signaling Networks. 1 Credit.
Acquire the scientific vocabulary of the signaling network field. Master key concepts from mathematical characterization of signaling circuits. Develop and apply critical analysis skills.
Same as: BIOC 743.

PHCO 744. Topics on Stem Cells and Development. 1 Credit.
Required preparation, coursework in genetics, cell biology, and molecular biology. Permission of the instructor. Course addresses key issues in developmental biology focused on the role of stem cells and emphasizes in-depth discussion of current literature and unanswered questions. One of the Contemporary Topics in Cell Signaling modules.
Same as: BIOC 744.

PHCO 745. Intercellular Signaling in Development and Disease. 1 Credit.
This graduate-level course concentrates on up-to-date views of intercellular signal processing, with emphasis on signal transduction mechanisms as they relate to cellular/physiological responses in both normal development and disease. Signaling mechanisms that will be discussed include autocrine, paracrine, juxtacrine signaling and cell-matrix interactions.
Same as: BIOC 745.
PHCO 746. Introduction to Computer Vision Tools for Modern Microscopy. 1 Credit.
This course will introduce computer vision methods for cell biology. Each topic will be motivated with an explanation of a computational challenge, followed by a discussion of available techniques to address the need and practical examples for how to apply the techniques.

PHCO 747. Biological Concepts. 1.5 Credit.
Overview of structures and biological determinants of conditions and diseases of the oral cavity. Both growth and development and pathophysiology will be introduced in the context of three areas of oral biology; biology of extracellular matrices, host-pathogens interactions, and orofacial neurobiology.
Same as: OCBM 732, NBIO 732.

PHCO 748. Translational Pain Medicine. 1.5 Credit.
This is a clinician-taught course that advances students' understanding of chronic pain (e.g., head/face pain, pelvic pain, back pain, cancer pain, surgical pain) in both the classroom and the clinic.
Requisites: Prerequisite, OBIO 732; Permission of the instructor for students lacking the prerequisite.
Same as: OCBM 733.

PHCO 749. Practical RNA-Seq. 2 Credits.
This course is designed to familiarize students with everything needed to run an RNA-Seq experiment. There will be minimal emphasis on theory and heavy focus on practical aspects. There are no formal prerequisites required for this course and no prior experience with UNIX or the command line interface is expected.
Same as: GNET 749.

PHCO 850. Seminar in Neurobiology. 3 Credits.
Permission of the department. An intensive consideration of selected topics and problems in neurobiology. The course focuses on the development of presentation and evaluation skills of the trainees. Six credit hours required for neurobiology graduates.
Same as: NBIO 850, BIOL 850.

PHCO 900. Special Pharmacology Research. 3-6 Credits.

PHCO 901. Research in Pharmacology. 1-15 Credits.
Permission of the department.

PHCO 951. Research in Neurobiology. 3-12 Credits.
Permission of the department. Research in various aspects of neurobiology. Six to 24 hours a week.
Same as: NBIO 951, BIOL 951.

PHCO 989. Special Pharmacology Research. 3-6 Credits.

PHCO 993. Master's Research and Thesis. 3 Credits.
Permission of the department.
Repeat rules: May be repeated for credit.

PHCO 994. Doctoral Research and Dissertation. 3 Credits.
Permission of the department.
Repeat rules: May be repeated for credit.